Learn More
While a potential causal factor in Alzheimer's disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in(More)
Ethylene glycol poisoning is an important toxicological problem in medical practice because early diagnosis and treatment can prevent considerable morbidity and mortality. When ingested in the form of antifreeze or other automotive products, ethylene glycol results in central nervous system depression, cardiopulmonary compromise, and renal insufficiency.(More)
Synaptotagmins (Syt) play important roles in Ca(2+)-induced neuroexocytosis. Insulin secretion of the pancreatic beta-cell is dependent on an increase in intracellular Ca(2+); however, Syt involvement in insulin exocytosis is poorly understood. Reverse transcriptase-polymerase chain reaction studies showed the presence of Syt isoforms III, IV, V, and VII in(More)
Mastoparan, a tetradecapeptide found in wasp venom that stimulates G-proteins, increases insulin secretion from beta-cells. In this study, we have examined the role of heterotrimeric G-proteins in mastoparan-induced insulin secretion from the insulin-secreting beta-cell line beta-TC3. Mastoparan stimulated insulin secretion in a dose-dependent manner from(More)
Leucine or the nonmetabolized leucine analog +/- 2-amino-2-norbornane-carboxylic acid (BCH) (both at 10 mmol/l) induced biphasic insulin secretion in the presence of 2 mmol/l glutamine (Q2) in cultured mouse islets pretreated for 40 min without glucose but with Q2 present. The beta-cell response consisted of an initial peak of 20- to 25-fold above basal and(More)
Functional chemokine receptors and chemokines are expressed by glial cells within the CNS, though relatively little is known about the patterns of neuronal chemokine receptor expression and function. We developed monoclonal antibodies to the CCR1, CCR2, CCR3, CCR6, CXCR2, CXCR3 and CXCR4 chemokine receptors to study their expression in human fetal neurons(More)
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous(More)
In the beta TC3 insulin-secreting beta-cell line, glucose rapidly induces the tyrosine phosphorylation of the 97-kDa insulin receptor beta-subunit. Phosphorylation is transient, with fourfold stimulation by 2 min and subsequent dephosphorylation to basal levels by 10-15 min. Elevating the extracellular KCl concentration equipotently initiates receptor(More)
The deposition of amyloid beta-protein (A beta or beta A4) is a key feature of Alzheimer's disease. Most studies have focused on the generation of A beta, but little is known about the degradation of A beta. Recent reports suggest that insulin-degrading enzyme (IDE) and neutral endopeptidase (NEP) are involved in the extracellular degradation of A beta. To(More)
To understand the role of the insulin receptor pathway in beta-cell function, we have generated stable beta-cells (betaIRS1-A) that overexpress by 2-fold the insulin receptor substrate-1 (IRS-1) and compared them to vector-expressing controls. IRS-1 overexpression dramatically increased basal cytosolic Ca2+ levels from 81 to 278 nM, but it did not affect(More)