Bryan A Daniels

Learn More
Generation of center-surround antagonistic receptive fields in the outer retina occurs via inhibitory feedback modulation of presynaptic voltage-gated calcium channels in cone photoreceptor synaptic terminals. Both conventional and unconventional neurotransmitters, as well as an ephaptic effect, have been proposed, but the intercellular messaging that(More)
D-Serine is an important signaling molecule throughout the central nervous system, acting as an N-methyl-D-aspartate (NMDA) receptor coagonist. This study investigated the D-serine modulation of non-NMDA ionotropic glutamate receptors expressed by inner retinal neurons. We first identified that the degradation of endogenous retinal D-serine, by application(More)
NMDA receptor (NMDAR) activation is enhanced by d-serine or glycine acting at a specific binding site. Previous work has shown d-serine enhancement of NMDAR currents in retinal ganglion cells. One of the major functions of most NMDA channels is to permit calcium influx into cells. We show that d-serine enhances glutamate-induced calcium responses in(More)
As in many CNS neurons, retinal ganglion cells (RGCs) receive fast synaptic activation through postsynaptic ionotropic receptors. However, the potential role of postsynaptic group I metabotropic glutamate receptors (mGluRs) in these neurons is unknown. In this study we first demonstrated that the selective group I mGluR agonist(More)
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size.(More)
  • 1