Learn More
Fruit flies selectively orient toward the visual stimuli that are most salient in their environment. We recorded local field potentials (LFPs) from the brains of Drosophila melanogaster as they responded to the presentation of visual stimuli. Coupling of salience effects (odor, heat or novelty) to these stimuli modulated LFPs in the 20-30 Hz range by(More)
Genetic connections between learning and rhythmicity were suggested to have been established in a previous study, in part because the duskyAndante (dyAnd) mutation in Drosophila disrupted both behaviors. dyAnd, isolated as a slow-clock variant, was reported to cause an approximately fourfold decrement in courtship-suppression conditioning. These effects(More)
Human perception, and consequently behavior, is driven by attention dynamics. In the special case of rivalry, where attention alternates between competing percepts, such dynamics can be measured and their determinants investigated. A recent study in the fruit fly, Drosophila melanogaster, now shows that the origins of attentional rivalry may be quite(More)
The fruitfly, Drosophila melanogaster, has become a critical model system for investigating sleep functions. Most studies use duration of inactivity to measure sleep. However, a defining criterion for sleep is decreased behavioral responsiveness to stimuli. Here we introduce the Drosophila ARousal Tracking system (DART), an integrated platform for(More)
Although there is much behavioral evidence for complex brain functions in insects, it is not known whether insects have selective attention. In humans, selective attention is a dynamic process restricting perception to a succession of salient stimuli, while less relevant competing stimuli are suppressed. Local field potential recordings in the brains of(More)
In mammals, the neurotransmitter dopamine (DA) modulates a variety of behaviours, although DA function is mostly associated with motor control and reward. In insects such as the fruitfly, Drosophila melanogaster, DA also modulates a wide array of behaviours, ranging from sleep and locomotion to courtship and learning. How can a single molecule play so many(More)
While the research community has accepted the value of rodent models as informative research platforms, there is less awareness of the utility of other small vertebrate and invertebrate animal models. Neuroscience is increasingly turning to smaller, non-rodent models to understand mechanisms related to neuropsychiatric disorders. Although they can never(More)
How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in(More)
The authors present a novel paradigm for studying visual responses in Drosophila. An eight-level choice maze was found to reliably segregate fly populations according to their responses to moving stripes displayed on a computer screen. Visual responsiveness was robust in wild-type flies, and performance depended on salience effects such as stimulus color(More)
The primary function of a brain is to produce adaptive behavioral choices by selecting the right action at the right time. In humans, attention determines action selection as well as memory formation, whereas memories also guide which external stimuli should be attended to (Chun and Turk-Browne, 2007). The complex codependence of attention, memory, and(More)