Bruno Vailhé

Learn More
V asculogenesis and angiogenesis are the fundamental processes by which new blood vessels are formed (Carmeliet, 2000; Risau, 1997; Risau and Flamme, 1995). Vasculogenesis is defined as the differentiation of precursor cells (angioblasts) into endothelial cells and the de novo formation of a primitive vascular network, whereas angiogenesis is defined as the(More)
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific type I receptor of the TGFbeta receptor family that is implicated in angiogenesis and in the pathogenesis of the vascular disease, hereditary hemorrhagic telangiectasia (HHT). In the absence of a specific ligand, ALK1 cellular functions have been mainly studied through the use of a(More)
Thrombospondin-1 (TSP-1) was one of the first endogenous inhibitors of angiogenesis to be discovered. This large multimodular protein of around 600 kDa inhibits endothelial cell proliferation, migration and morphogenic organization into capillary tubes. TSP-2 shares homology with TSP-1 in primary sequence, structural organization and angiostatic properties.(More)
This study highlights the importance of several factors involved in the formation of capillary-like structure formation (CLS) using Human Umbilical Vein Endothelial Cells (HUVEC) and Bovine Retinal Endothelial Cells (BREC) cultured on fibrin gels. The fibrin concentration inducing (CLS) was 0.5 mg/ml for HUVEC and 8 mg/ml for BREC. The high fibrin(More)
Angiogenesis is involved in numerous pathologies. Studies with in vitro models allow the description and analysis of the different steps involved in this process under defined culture conditions. We describe a controllable and reproducible in vitro model. We assessed the usefulness of this model with two different cell lines: human umbilical vein(More)
Angiogenesis (formation of new blood vessels within a tissue) is a multifactorial process involved in numerous pathologies (tumours...) difficult to study in vivo. It can be described as successive steps : basal membrane degradation by the endothelial cells (E.C.), migration, mitoses, capillary tube formation. Studies with in vitro models permit to describe(More)
This study deals with the role of the mechanical properties of matrices in in vitro angiogenesis. The ability of rigid fibrinogen matrices with fibrin gels to promote capillarylike structures was compared. The role of the mechanical properties of the fibrin gels was assessed by varying concentration of the fibrin gels. When the concentration of fibrin gels(More)
  • 1