Bruno Sudret

Learn More
Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may(More)
Time-variant reliability problems appear in the engineering practice when (a) the material properties of the structure deteriorate in time or (b) random loading modelled as random processes is involved. This paper presents a method called PHI2 which is based on the outcrossing approach and allows to solve such problems using classical time-invariant(More)
Describing accurately damage in degrading reinforced concrete structures is of major interest in the context of durability analysis and maintenance. Due to numerous sources of uncertainty in the degradation models, a probabilistic approach is suitable. The probabilistic description of the extent of damage requires introducing random fields for modelling the(More)
The study of the reliability of an aging structure requires taking into account the influence of time. The knowledge of the evolution in time of the probability of failure is essential to optimize maintenance policy. The classical approach for performing time-variant reliability analysis relies upon the computation of upcrossing rates (of the limit state(More)
In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol’ indices are recognized as accurate techniques, at a rather high(More)