Learn More
Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants.(More)
Infections with Plasmodium falciparum during pregnancy lead to the accumulation of parasitized red blood cells (infected erythrocytes, IEs) in the placenta. IEs of P. falciparum isolates that infect the human placenta were found to bind immunoglobulin G (IgG). A strain of P. falciparum cloned for IgG binding adhered massively to placental(More)
Trafficking pathways in malaria-infected erythrocytes are complex because the internal parasite is separated from the serum by the erythrocyte and parasitophorous vacuolar membranes. Intraerythrocytic Plasmodium falciparum parasites can endocytose dextrans, protein A and an IgG2a antibody. Here we show that these macromolecules do not cross the erythrocyte(More)
BACKGROUND Host innate immunity contributes to malaria clinical outcome by providing protective inflammatory cytokines such as interferon-gamma, and by shaping the adaptive immune response. Plasmodium falciparum (Pf) is the etiologic agent of the most severe forms of human malaria. Natural Killer (NK) cells are lymphocytes of the innate immune system that(More)
  • 1