Learn More
Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants.(More)
Plasmodium falciparum parasites express variant adhesion molecules on the surface of infected erythrocytes (IEs), which act as targets for natural protection. Recently it was shown that IE sequestration in the placenta is mediated by binding to chondroitin sulfate A via the duffy binding-like (DBL)-gamma 3 domain of P falciparum erythrocyte membrane protein(More)
BACKGROUND Chondroitin-4-sulfate (CSA) was recently described as a Plasmodium falciparum cytoadherence receptor present on Saimiri brain microvascular and human lung endothelial cells. MATERIALS AND METHODS To specifically study chondroitin-4-sulfate-mediated cytoadherence, a parasite population was selected through panning of the Palo-Alto (FUP) 1 P.(More)
Severe malaria is characterized by the sequestration of Plasmodium falciparum-infected erythrocytes (IEs). Because platelets can affect tumor necrosis factor (TNF)-activated endothelial cells (ECs), we investigated their role in the sequestration of IEs, using IEs that were selected because they can adhere to endothelial CD36 (IE(CD36)), a P. falciparum(More)
A common pathological characteristic of Plasmodium falciparum infection is the cytoadhesion of mature-stage-infected erythrocytes (IE) to host endothelium and syncytiotrophoblasts. Massive accumulation of IE in the brain microvasculature or placenta is strongly correlated with severe forms of malaria. Extensive binding of IE to placental chondroitin sulfate(More)
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium(More)
Infections with Plasmodium falciparum during pregnancy lead to the accumulation of parasitized red blood cells (infected erythrocytes, IEs) in the placenta. IEs of P. falciparum isolates that infect the human placenta were found to bind immunoglobulin G (IgG). A strain of P. falciparum cloned for IgG binding adhered massively to placental(More)
The origin of membraneous structures in the cytoplasm of human erythrocytes infected with the malaria parasite, Plasmodium falciparum, was determined by confocal fluorescence imaging microscopy. When infectious merozoites invaded erythrocytes labeled with the fluorescent, lipophilic, non-exchangeable molecules DiIC16 or DiOC16, a ring of fluorescence was(More)
Adherence of Plasmodium falciparum parasitized erythrocytes to the microvascular endothelium is mediated by different receptors expressed by endothelial cells. The study of the adherence of P. falciparum-infected erythrocytes to Saimiri monkey brain microvascular endothelial cells revealed the presence of an additional receptor, which was identified and(More)
Trafficking pathways in malaria-infected erythrocytes are complex because the internal parasite is separated from the serum by the erythrocyte and parasitophorous vacuolar membranes. Intraerythrocytic Plasmodium falciparum parasites can endocytose dextrans, protein A and an IgG2a antibody. Here we show that these macromolecules do not cross the erythrocyte(More)