Learn More
BACKGROUND Formation of the intrinsic tenase complex is an essential event in the procoagulant reactions that lead to clot formation. The tenase complex is formed when the activated serine protease, Factor IXa (FIXa), and its cofactor Factor VIIIa (FVIIIa) assemble on a phospholipid surface to proteolytically convert the zymogen Factor X (FX) into its(More)
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to(More)
BACKGROUND Blood coagulation factor (F) Va is the essential protein cofactor to the serine protease FXa. Factor Va stimulates the thrombin-to-prothrombin conversion by the prothrombinase complex, by at least five orders of magnitude. Factor Va binds with very high affinity to phosphatidylserine containing phospholipid membranes, which allows the(More)
BACKGROUND Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final(More)
Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used(More)
C4b-binding protein (C4BP) is a regulator of the classical complement pathway, acting as a cofactor to factor I in the degradation of C4b. Computer modeling and structural analysis predicted a cluster of positively charged amino acids at the interface between complement control protein modules 1 and 2 of the C4BP alpha-chain to be involved in C4b binding.(More)
In silico screening based on the structures of the ligands or of the receptors has become an essential tool to facilitate the drug discovery process but compound collections are needed to carry out such in silico experiments. It has been recognized that absorption, distribution, metabolism, excretion and toxicity (ADME/tox) are key properties that need to(More)
HSC70 interacting protein (HIP) is an essential cytoplasmic cochaperone involved in the regulation of HSC70 chaperone activity and the maturation of progesterone receptor. To determine the quaternary structure and the gross conformation of the protein in solution, a wide array of biochemical and biophysical techniques has been used. Size-exclusion(More)
BACKGROUND Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the(More)
During these last 15 years, drug discovery strategies have essentially focused on identifying small molecules able to inhibit catalytic sites. However, other mechanisms could be targeted. Protein-protein interactions play crucial roles in a number of biological processes, and, as such, their disruption or stabilization is becoming an area of intense(More)