Bruno Michel

Learn More
We show a proof-of-concept in which we combine our previously published concepts of micromosaic immunoassays (microMIAs) with self-regulating microfluidic networks (microFNs) to detect C-reactive protein (CRP) and other cardiac markers such as myoglobin (Mb) and cardiac Troponin I (cTnI). The microFNs are microfabricated in Si, have a well-defined surface(More)
Liquid cooling has emerged as a promising solution for addressing the elevated temperatures in 3D stacked architectures. In this work, we first propose a framework for detailed thermal modeling of the microchannels embedded between the tiers of the 3D system. In multicore systems, workload varies at runtime, and the system is generally not fully utilized.(More)
The transport of minute amounts of liquids using microfluidic systems has opened avenues for higher throughput and parallelization of miniaturized bio/chemical processes combined with a great economy of reagents. In this report, we present a microfluidic capillary system (CS) that autonomously transports aliquots of different liquids in sequence: liquids(More)
We address integration density in future computers based on packaging and architectural concepts of the human brain: a dense 3-D architecture for interconnects, fluid cooling, and power delivery of energetic chemical compounds transported in the same fluid with little power needed for pumping. Several efforts have demonstrated that by vertical integration,(More)
We use microfluidic chips to detect the biologically important cytokine tumor necrosis factor alpha (TNF- alpha) with picomolar sensitivity using sub-microliter volumes of samples and reagents. The chips comprise a number of independent capillary systems (CSs), each of which is composed of a filling port, an appended microchannel, and a capillary pump. Each(More)
We are developing a high-resolution printing technique based on transferring a pattern from an elastomeric stamp to a solid substrate by conformal contact. This is an attempt to enhance the accuracy of classical printing to a precision comparable with optical lithography, creating a low-cost, large-area, high-resolution patterning process. First, we(More)
Enhancing mixing is of uttermost importance in many laminar microfluidic devices, aiming at overcoming the severe performance limitation of species transport by diffusion alone. Here we focus on the significant category of microscale co-laminar flows encountered in membraneless redox flow cells for power delivery. The grand challenge is to achieve(More)