Bruno Mendiboure

  • Citations Per Year
Learn More
This work is dedicated to the simultaneous application of the gradient theory of fluid interfaces and Monte Carlo molecular simulations for the description of the interfacial behavior of the methane/water mixture. Macroscopic (interfacial tension, adsorption) and microscopic (density profiles, interfacial thickness) properties are investigated. The gradient(More)
1.1 Abstract Poromechanics offers a consistent theoretical framework for describing the mechanical response of porous solids. When dealing with fully saturated nanoporous materials, which exhibit pores of the nanometer size, additional effects due to adsorption and confinement of the fluid molecules in the smallest pores must be accounted for. From the(More)
We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable(More)
Poromechanics offers a consistent theoretical framework for describing the mechanical response of porous solids fully or partially saturated with a fluid phase. When dealing with fully saturated microporous materials, which exhibit pores of the nanometer size, aside from the fluid pressure acting on the pore walls additional effects due to adsorption and(More)
We extend the well-known Test-Area methodology of Gloor et al. [J. Chem. Phys. 123, 134703 (2005)], originally proposed to evaluate the surface tension of planar fluid-fluid interfaces along a computer simulation in the canonical ensemble, to deal with the solid-fluid interfacial tension of systems adsorbed on cylindrical pores. The common method used to(More)
The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is(More)
We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264-6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to(More)
In a first part, interfacial properties of a pure monoatomic fluid interacting through the Mie n-6 potential (n=8, 10, 12, and 20) have been studied using extensive molecular simulations. Monte Carlo and molecular dynamics simulations have been employed, using, respectively, the test area approach and the mechanic route. In order to yield reference values,(More)
The aim of this work is to use a recently developed statistical model of dispersions with nonhydrodynamic interactions to describe the linear viscoelastic properties of emulsions of Newtonian liquids. None of the existing models can describe the rheological behavior of such systems, particularly the elastic properties, in the linear regime. We first present(More)