Bruno Lombard

Learn More
SUMMARY A method is proposed for accurately describing arbitrary-shaped free boundaries in finite-difference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature(More)
The propagation of elastic waves in a fractured rock is investigated, both theoretically and numerically. Outside the fractures, the propagation of compressional waves is described in the simple framework of one-dimensional linear elastodynam-ics. The focus here is on the interactions between the waves and fractures: for this purpose, the mechanical(More)
Propagation of monochromatic elastic waves across cracks is investigated in 1D, both theoretically and numerically. Cracks are modeled by nonlinear jump conditions. The mean dilatation of a single crack and the generation of harmonics are estimated by a perturbation analysis, and computed by the harmonic balance method. With a periodic and finite network of(More)
The interactions between linear elastic waves and a nonlinear crack with finite com-pressibility are studied in the one-dimensional context. Numerical studies on a hyperbolic model of contact with sinusoidal forcing have shown that the mean values of the scattered elastic displacements are discontinuous across the crack. The mean dilatation of the crack(More)
A numerical method is described for studying how elastic waves interact with imperfect contacts such as fractures or glue layers existing between elastic solids. These contacts have been classicaly modeled by interfaces, using a simple rheological model consisting of a combination of normal and tangential linear springs and masses. The jump conditions(More)
Propagation of transient mechanical waves in porous media is numerically investigated in 1D. The framework is the linear Biot's model with frequency-independant coefficients. The coexistence of a propagating fast wave and a diffusive slow wave makes numerical modeling tricky. A method combining three numerical tools is proposed: a fourth-order ADER scheme(More)
Remerciements C'est avec une grande tristesse que j'aborde cette page de remerciements. Olivier Coussy est décédé le vendredi 15 janvier 2010, soit une semaine après la soutenance de cette thèse d'habilitation, qu'il a présidée. C'était la première fois que je le rencontrai ; nous avons eu des discussions chaleureuses et animées. Cette rencontre(More)