Learn More
Layer-by-layer assembly was used to build thin films, consisting of multiple layers alternating cellulose nanocrystals and xyloglucan, benefiting from the strong non-electrostatic cellulose-xyloglucan interaction. Data from atomic force microscopy and neutron reflectivity showed that these well-defined films exhibited a thickness increasing linearly with(More)
Swelling behavior and rearrangements of an amorphous ultrathin cellulose film (20 nm thickness) exposed to water and subsequently dried were investigated with grazing incidence X-ray diffraction, neutron reflectivity, atomic force microscopy, and surface energy calculations obtained from contact angle measurements. The film swelled excessively in water,(More)
Neutron reflectivity measurements and AFM observations were used as complementary techniques to investigate multilayered films consisting of alternating sheets of rigid cellulose nanocrystals and flexible poly(allylamine hydrochloride) (PAH) prepared by the layer-by-layer assembly technique. Both techniques showed that smooth films with a high load of(More)
We explored the behavior and the characteristics of xyloglucan polysaccharide chains extracted from tamarind seeds in aqueous media. The initial solubilization is achieved by using a 0.01 M NaOH solution. The absence of compact aggregates in the solution and the average molecular mass of the individual chains were unambiguously demonstrated by size(More)
Cellulose nanocrystal suspensions in apolar solvent spontaneously form iridescent liquid-crystalline phases but the control of their macroscopic order is usually poor. The use of electric fields can provide control on the cholesteric orientation and its periodicity, allowing macroscopic sample homogeneity and dynamical tuning of their iridescent hues, and(More)
Thin liquid foam films stabilized with the addition of a temperature-sensitive neutral polymer, poly(N-isopropylacrylamide) (PNIPAM), in the presence of varying amounts of an anionic surfactant, SDS, were investigated using the thin-film balance. Data were analyzed in light of new and previously reported neutron reflectivity data describing the adsorption(More)
Two polymer-surfactant mixtures have been studied at the air-water interface using neutron reflectivity and surface tension techniques. For the noninteracting system poly(N-isopropylacrylamide) (PNIPAM)/octaethyleneglycol mono n-decyl ether (C10E8), the adsorption behavior is competitive and driven purely by surface pressure (pi). When pi(polymer) >(More)
The colloidal stability together with the tunable aggregation and viscoelastic properties of thermoresponsive polymer-grafted cellulose nanocrystals (CNCs) were investigated. TEMPO oxidation of CNCs followed by peptidic coupling in water were used to covalently graft thermosensitive Jeffamine polyetheramine M2005 chains onto the surface of CNCs. The(More)
This work describes the synthesis and self-assembly of carbohydrate-clicked rod-coil amphiphilic systems. Copper-catalyzed Huisgen cycloaddition was efficiently employed to functionalize the hydrophilic extremity of PEG-b-tetra(p-phenylene) conjugates by lactose and N-acetyl-glucosamine ligands. The resulting amphiphilic systems spontaneously self-assembled(More)