Learn More
The molecular mechanisms underlying early/recycling endosomes-to-TGN transport are still not understood. We identified interactions between the TGN-localized putative t-SNAREs syntaxin 6, syntaxin 16, and Vti1a, and two early/recycling endosomal v-SNAREs, VAMP3/cellubrevin, and VAMP4. Using a novel permeabilized cell system, these proteins were functionally(More)
SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with(More)
rab4 is a ras-like GTP-binding protein that associates with early endosomes in a cell cycle-dependent fashion. To determine its role during endocytosis, we generated stable cell lines that overexpressed mutant or wild-type rab4. By measuring endocytosis, transport to lysosomes, and recycling, we found that overexpression of wild-type rab4 had differential(More)
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized(More)
Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of(More)
rab6 is a ubiquitous ras-like GTPase involved in intra-Golgi transport. We have studied at both morphological and biochemical levels the behavior of Golgi resident proteins in HeLa cells overexpressing wild-type rab6 and GTP- and GDP-bound mutants of rab6 (rab6 Q72L and rab6 T27N, respectively). We show that wild-type rab6 and rab6 Q72L overexpression(More)
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct(More)
  • J H Kim, L Johannes, +4 authors S Grinstein
  • 1998
The pH within individual organelles of the secretory pathway is believed to be an important determinant of their biosynthetic activity. However, little is known about the determinants and regulation of the pH in the secretory organelles, which cannot be readily accessed by [H+]-sensitive probes. We devised a procedure for the dynamic, noninvasive(More)
Mutant alleles of SEC4, an essential gene required for the final stage of secretion in yeast, have been generated by in vitro mutagenesis. Deletion of the two cysteine residues at the C terminus of the protein results in a soluble non-functional protein, indicating that those two residues are required for normal localization of Sec4p to secretory vesicles(More)
Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however,(More)