Learn More
In this study we investigate how social media shape the networked public sphere and facilitate communication between communities with different political orientations. We examine two networks of political communication on Twit-ter, comprised of more than 250,000 tweets from the six weeks leading up to the 2010 U.S. congressional midterm elections. Using a(More)
—The widespread adoption of social media for political communication creates unprecedented opportunities to monitor the opinions of large numbers of politically active individuals in real time. However, without a way to distinguish between users of opposing political alignments, conflicting signals at the individual level may, in the aggregate, obscure(More)
Micro-blogging systems such as Twitter expose digital traces of social discourse with an unprecedented degree of resolution of individual behaviors. They offer an opportunity to investigate how a large-scale social system responds to exogenous or endogenous stimuli, and to disentangle the temporal, spatial and topical aspects of users' activity. Here we(More)
Online social networking communities may exhibit highly complex and adaptive collective behaviors. Since emotions play such an important role in human decision making, how online networks modulate human collective mood states has become a matter of considerable interest. In spite of the increasing societal importance of online social networks, it is unknown(More)
We study astroturf political campaigns on microblogging platforms: politically-motivated individuals and organizations that use multiple centrally-controlled accounts to create the appearance of widespread support for a candidate or opinion. We describe a machine learning framework that combines topological, content-based and crowdsourced features of(More)
Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We demonstrate a web service that tracks political memes in Twitter and helps detect(More)
The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role(More)
Analysis of aggregate and individual Web requests shows that Page-Rank is a poor predictor of traffic. We use empirical data to characterize properties of Web traffic not reproduced by Markovian models, including both aggregate statistics such as page and link traffic, and individual statistics such as entropy and session size. As no current model(More)
Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local(More)