Bruno D Cerrato

Learn More
Increased blood pressure in hypertension is hypothesized to be caused by high sympathetic nervous system (SNS) activity. Since Ang (1-7) exerts an inhibitory neuromodulatory effect on the SNS through a NO-mediated mechanism, we tested the hypothesis that Ang (1-7) alters centrally nitric oxide synthase (NOS) activity and expression in spontaneously(More)
As angiotensin (Ang) (1-7) decreases norepinephrine (NE) content in the synaptic cleft, we investigated the effect of Ang-(1-7) on NE neuronal uptake in spontaneously hypertensive rats. [(3)H]-NE neuronal uptake was measured in isolated hypothalami. NE transporter (NET) expression was evaluated in hypothalamic neuronal cultures by western-blot. Ang-(1-7)(More)
The RAS (renin-angiotensin system) is composed of two arms: the pressor arm containing AngII (angiotensin II)/ACE (angiotensin-converting enzyme)/AT1Rs (AngII type 1 receptors), and the depressor arm represented by Ang-(1-7) [angiotensin-(1-7)]/ACE2/Mas receptors. All of the components of the RAS are present in the brain. Within the brain, Ang-(1-7)(More)
Ang-(1-7) [angiotensin-(1-7)] constitutes an important functional end-product of the RAS (renin-angiotensin system) endogenously formed from AngI (angiotensin I) or AngII (angiotensin II) through the catalytic activity of ACE2 (angiotensin-converting enzyme 2), prolyl carboxypeptidase, neutral endopeptidase or other endopeptidases. Ang-(1-7) lacks the(More)
Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the(More)
The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of β-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated(More)
  • 1