Learn More
Comprehensive evidence supports that oligomerization and accumulation of amyloidogenic Aβ42 peptides in brain is crucial in the pathogenesis of both familial and sporadic forms of Alzheimer's disease. Imaging studies indicate that the buildup of Aβ begins many years before the onset of clinical symptoms, and that subsequent neurodegeneration and cognitive(More)
Alzheimer disease is characterized by pathological aggregation of two proteins, tau and Abeta-amyloid, both of which are considered to be toxic to neurons. In this review we summarize recent advances on small molecule inhibitors of protein aggregation with emphasis on tau, with activities mediated by the direct interference of self-assembly. The inhibitors(More)
A variety of human diseases are suspected to be directly linked to protein misfolding. Highly organized protein aggregates, called amyloid fibrils, and aggregation intermediates are observed; these are considered to be mediators of cellular toxicity and thus attract a great deal of attention from investigators. Neurodegenerative pathologies such as(More)
γ-Secretase modulators (GSMs) inhibit the generation of amyloidogenic Aβ42 peptides and are promising agents for treatment or prevention of Alzheimer's disease (AD). Recently, a second generation of GSMs with favorable pharmacological properties has emerged, but preclinical studies to assess their efficacy in vivo are lacking. Such studies rely on(More)
The two histopathological hallmarks that characterize Alzheimer s disease (AD) are the extracellular amyloid plaques that are formed by b-amyloid fragments of the amyloid precursor protein (APP), and intracellular neurofibrillary tangles and neuropil threads, which consist of the microtubule-associated protein tau forming paired helical filaments with(More)
Following ectodomain shedding by beta-secretase, successive proteolytic cleavages within the transmembrane sequence (TMS) of the amyloid precursor protein (APP) catalyzed by gamma-secretase result in the release of amyloid-beta (Abeta) peptides of variable length. Abeta peptides with 42 amino acids appear to be the key pathogenic species in Alzheimer's(More)
The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and(More)
Pharmacological approaches directed toward Alzheimer disease are diversifying in parallel with a growing number of promising targets. Investigations on the microtubule-associated protein tau yielded innovative targets backed by recent findings about the central role of tau in numerous neurodegenerative diseases. In this review, we summarize the recent(More)
Alzheimer's disease (AD) is the most common form of neurodegenerative dementias worldwide. Amyloid-β deposition, neurofibrillary tangle formation and Neuroinflammation are the major pathogenetic mechanisms that in concert lead to memory dysfunction and decline of cognition. To date, there is no curative treatment for AD. Epidemiological analysis support the(More)
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) that has been reported to reduce the risk of developing Alzheimer's disease (AD). Its preventive effects in AD are likely pleiotropic as ibuprofen displays both anti-inflammatory activity by inhibition of cyclooxygenases and anti-amyloidogenic activity by modulation of γ-secretase. In order to study(More)