Learn More
Here we report that in staurosporine-induced apoptosis of HeLa cells, Bid, a BH3 domain containing protein, translocates from the cytosol to mitochondria. This event is associated with a change in conformation of Bax which leads to the unmasking of its NH2-terminal domain and is accompanied by the release of cytochrome c from mitochondria. A similar finding(More)
In many types of apoptosis, the proapoptotic protein Bax undergoes a change in conformation at the level of the mitochondria. This event always precedes the release of mitochondrial cytochrome c, which, in the cytosol, activates caspases through binding to Apaf-1. The mechanisms by which Bax triggers cytochrome c release are unknown. Here we show that(More)
Proteins of the Bcl-2 family are intracellular membrane-associated proteins that regulate programmed cell death (apoptosis) either positively or negatively by as yet unknown mechanisms. Bax, a pro-apoptotic member of the Bcl-2 family, was shown to form channels in lipid membranes. Bax triggered the release of liposome-encapsulated carboxyfluorescein at both(More)
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane.(More)
Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the(More)
During apoptosis, proapoptotic factors are released from mitochondria by as yet undefined mechanisms. Patch-clamping of mitochondria and proteoliposomes formed from mitochondrial outer membranes of mammalian (FL5.12) cells has uncovered a novel ion channel whose activity correlates with onset of apoptosis. The pore diameter inferred from the largest(More)
The crucial step in the intrinsic, or mitochondrial, apoptotic pathway is permeabilization of the mitochondrial outer membrane. Permeabilization triggers release of apoptogenic factors, such as cytochrome c, from the mitochondrial intermembrane space into the cytosol where these factors ensure propagation of the apoptotic cascade and execution of cell(More)
Bax-induced mitochondrial outer membrane permeabilization (MOMP) is considered as one of the key control switches of apoptosis. MOMP requires Bax relocation to and insertion into the outer mitochondrial membrane to oligomerize and form pores allowing the release of apoptogenic factors such as cytochrome c. Even if these essential steps are now well-defined,(More)
Bax is a Bcl-2 family protein with proapoptotic activity, which has been shown to trigger cytochrome c release from mitochondria both in vitro and in vivo. In control HeLa cells, Bax is present in the cytosol and weakly associated with mitochondria as a monomer with an apparent molecular mass of 20,000 Da. After treatment of the HeLa cells with the(More)
MAP kinase phosphatase-3 (MKP-3) dephosphorylates phosphotyrosine and phosphothreonine and inactivates selectively ERK family mitogen-activated protein (MAP) kinases. MKP-3 was activated by direct binding to purified ERK2. Activation was independent of protein kinase activity and required binding of ERK2 to the noncatalytic amino-terminus of MKP-3. Neither(More)