Learn More
Lightcuts is a scalable framework for computing realistic illumination. It handles arbitrary geometry, non-diffuse materials, and illumination from a wide variety of sources including point lights, area lights, HDR environment maps, sun/sky models, and indirect illumination. At its core is a new algorithm for accurately approximating illumination from many(More)
Irregular applications, which manipulate large, pointer-based data structures like graphs, are difficult to parallelize manually. Automatic tools and techniques such as restructuring compilers and run-time speculative execution have failed to uncover much parallelism in these applications, in spite of a lot of effort by the research community. These(More)
Microfacet models have proven very successful for modeling light reflection from rough surfaces. In this paper we review microfacet theory and demonstrate how it can be extended to simulate transmission through rough surfaces such as etched glass. We compare the resulting transmission model to measured data from several real surfaces and discuss appropriate(More)
Multidimensional lightcuts is a new scalable method for efficiently rendering rich visual effects such as motion blur, participating media, depth of field, and spatial anti-aliasing in complex scenes. It introduces a flexible, general rendering framework that unifies the handling of such effects by discretizing the integrals into large sets of gather and(More)
This paper presents a new interactive rendering and display technique for complex scenes with expensive shading, such as global illumination. Our approach combines sparsely sampled shading (points) and analytically computed discontinuities (edges) to interactively generate high-quality images. The <i>edge-and-point</i> image is a new compact representation(More)
Efficient, realistic rendering of complex scenes is one of the grand challenges in computer graphics. Perceptually based rendering addresses this challenge by taking advantage of the limits of human vision. However, existing methods, based on predicting visible image differences, are too conservative because some kinds of image differences do not matter to(More)
Interactive rendering requires rapid visual feedback. The render cache is a new method for achieving this when using high-quality pixel-oriented renderers such as ray tracing that are usually considered too slow for interactive use. The render cache provides visual feedback at a rate faster than the renderer can generate complete frames, at the cost of(More)
Recent years have seen increasing attention and significant progress in many-light rendering, a class of methods for the efficient computation of global illumination. The many-light formulation offers a unified mathematical framework for the problem reducing the full lighting transport simulation to the calculation of the direct illumination from many(More)
Recent studies of irregular applications such as finite-element mesh generators and data-clustering codes have shown that these applications have a generalized data parallelism arising from the use of iterative algorithms that perform computations on elements of worklists. In some irregular applications, the computations on different elements are(More)
This paper introduces feature-based textures, a new image representation that combines features and samples for high-quality texture mapping. Features identify boundaries within an image where samples change discontinuously. They can be extracted from vector graphics representations, or explicitly added to raster images to improve sharpness. Texture lookups(More)