Bruce S Ault

Learn More
Photolysis of 1 in chloroform yielded 2 as the major product and a small quantity of 3. Laser flash photolysis demonstrated that upon irradiation, the first excited triplet state of the ketone (T(1K)) of 1 is formed and decayed to form radical 4, which has a λ(max) at 380 nm (τ = 2 μs). Radical 4 expelled a nitrogen molecule to yield imine radical 5 (λ(max)(More)
The matrix isolation technique has been combined with infrared spectroscopy and theoretical calculations to explore the reaction of (CH(3))(2)Cd with O(3) over a range of time scales and upon irradiation. During twin jet deposition, multiple novel product species were observed along with several stable "late" products. Following annealing of these matrices(More)
The photolysis of diiododifluoromethane (CF(2)I(2)) in condensed phases was studied by a combination of matrix isolation and ultrafast time-resolved spectroscopy, in concert with ab initio calculations. Photolysis at wavelengths of 355 or 266 nm of CF(2)I(2):Ar samples (1:5000) held at approximately 8 K yielded iso-CF(2)I(2) (F(2)C-I-I), a metastable isomer(More)
Matrix isolation studies, combined with infrared spectroscopy, of the twin jet codeposition of ozone into matrices containing either cyclopentadiene or cyclopentene have led to the first observation of several early intermediates in these ozonolysis reactions. Specifically, evidence is presented for the formation, identification, and characterization of the(More)
Photolysis of vinylazide 1, which has a built-in acetophenone triplet sensitizer, in argon-saturated toluene results in azirine 2, whereas irradiation in oxygen-saturated toluene yields cyanide derivatives 3 and 4. Laser flash photolysis of azide 1 in argon-saturated acetonitrile shows formation of vinylnitrene 1c, which has a λmax at ∼300 nm and a lifetime(More)
The matrix-isolation technique has been combined with infrared spectroscopy to identify and characterize the products formed by irradiation of cage-paired CrCl(2)O(2) and a series of chloroethenes, C(2)H(x)()Cl(y)() (x + y = 4). For each system, oxygen-atom transfer occurred upon irradiation, yielding the corresponding acetyl chloride derivative and the(More)
The ozonolysis reactions of 1,3- and 1,4-cyclohexadiene have been studied using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental and theoretical results demonstrate that these reactions predominantly do not follow the long-accepted Criegee mechanism. Rather, the reaction of O3 with 1,4-cyclohexadiene leads(More)
Photolysis of 3-azido-1,3-diphenyl-propan-1-one (1a) in toluene yields 1,3-diphenyl-propen-1-one (2), whereas irradiation of 3-azido-2,2-dimethyl-1,3-diphenyl-propan-1-one (1b) results in the formation of mainly 2,2-dimethyl-1,3-diphenyl-propan-1-one. Laser flash photolysis (308 nm) of 1a,b in acetonitrile reveals a transient absorption (lambda max =(More)
The reactions between ferrocene (Cp2Fe) (2a) and ozone (O3) were studied using low-temperature matrix-isolation techniques coupled with theoretical density functional theory (DFT) calculations. Co-deposition of Ar/Cp2Fe and Ar/O3 gas mixtures onto a cryogenically cooled CsI window produced a dark-green charge-transfer complex, Cp2Fe-O3, that photodecomposed(More)