Bruce R. Pitt

Learn More
Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the(More)
We report here that, like nonheme iron, protein-bound intracellular heme iron is also a target for destruction by endogenously produced nitric oxide (NO). In isolated rat hepatocytes NO synthesis results in substantial (approximately 60%) and comparable loss of catalase and cytochrome P450 as well as total microsomal heme, and decreased heme synthetic(More)
We have previously reported that intravenous administration of cationic lipid-protamine-DNA complexes (LPD) induces production of large quantities of proinflammatory cytokines that are toxic and cause inhibition of transgene expression. Cytokine induction appears to be mediated by the unmethylated CpG sequences since methylation of plasmid DNA significantly(More)
Cationic lipid-mediated intravenous gene delivery shows promise in treating pulmonary diseases including lung tumor metastases, pulmonary hypertension, and acute respiratory distress syndrome. Nevertheless, clinical applications of cationic lipidic vectors via intravenous administration are limited by their transient gene expression. In addition, repeated(More)
Embryonic cells from transgenic mice with targeted disruption of metallothionein I and II genes expressed no detectable metallothionein either constitutively or after treatment with cadmium, in contrast to cultured cells that were wild type or heterozygous for the loss of the metallothionein genes. Metallothionein null cells were most sensitive to the(More)
BACKGROUND We have previously reported that vascular inducible nitric oxide synthase (iNOS) gene transfer inhibits injury-induced intimal hyperplasia in vitro and in vivo. One mechanism by which NO may prevent intimal hyperplasia is by preserving the endothelium or promoting its regeneration. To study this possibility we examined the effect of iNOS gene(More)
Selective oxidation of phosphatidylserine (PS) during apoptosis precedes its externalization in plasma membrane and is essential for the engulfment of apoptotic cells. To experimentally test whether PS oxidation stimulates its externalization via its effects on aminophospholipid translocase (APT) or by enhanced PS scrambling, action of oxidized PS (PSox)(More)
Although zinc is a well-known inhibitor of apoptosis, it may contribute to oxidative stress-induced necrosis. We noted that N,N,N',N'- tetrakis(2-pyridylmethyl)ethylenediamine (TPEN; >10 microM), a zinc chelator, quenched fluorescence of the zinc-specific fluorophore Zinquin and resulted in an increase in spontaneous apoptosis in cultured sheep pulmonary(More)
Although the function of metallothionein (MT), a 6- to 7-kDa cysteine-rich metal binding protein, remains unclear, it has been suggested from in vitro studies that MT is an important component of intracellular redox signaling, including being a target for nitric oxide (NO). To directly study the interaction between MT and NO in live cells, we generated a(More)
To achieve efficient systemic gene delivery to the lung with minimal toxicity, a vector was developed by chemically conjugating a cationic polymer, polyethylenimine (PEI), with anti-platelet endothelial cell adhesion molecule (PECAM) antibody (Ab). Transfection of mouse lung endothelial cells with a plasmid expression vector with cDNA to luciferase (pCMVL)(More)