Learn More
Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical synapses change a little on each reinstatement, and that(More)
O'Keefe and Recce [1993] Hippocampus 3:317-330 described an interaction between the hippocampal theta rhythm and the spatial firing of pyramidal cells in the CA1 region of the rat hippocampus: they found that a cell's spike activity advances to earlier phases of the theta cycle as the rat passes through the cell's place field. The present study makes use of(More)
Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated(More)
Ensemble recordings of 73 to 148 rat hippocampal neurons were used to predict accurately the animals' movement through their environment, which confirms that the hippocampus transmits an ensemble code for location. In a novel space, the ensemble code was initially less robust but improved rapidly with exploration. During this period, the activity of many(More)
Simultaneous recordings were made from large ensembles of hippocampal "place cells" in three rats during spatial behavioral tasks and in slow-wave sleep preceding and following these behaviors. Cells that fired together when the animal occupied particular locations in the environment exhibited an increased tendency to fire together during subsequent sleep,(More)
The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by(More)
Single neuron activity was recorded in the granular layer of the fascia dentata in freely moving rats, while the animals performed a spatial "working" memory task on an eight-arm maze. Using recording methods that facilitate detection of units with low discharge rates, it was found that the majority (88%) of cells in this layer have mean rates below 0.5 Hz,(More)
We used fluorescent in-situ hybridization and confocal microscopy to monitor the subcellular distribution of the immediate-early gene Arc. Arc RNA appeared in discrete intranuclear foci within minutes of neuronal activation and subsequently disappeared from the nucleus and accumulated in the cytoplasm by 30 minutes. The time course of nuclear versus(More)
A minimal synaptic architecture is proposed for how the brain might perform path integration by computing the next internal representation of self-location from the current representation and from the perceived velocity of motion. In the model, a place-cell assembly called a "chart" contains a two-dimensional attractor set called an "attractor map" that can(More)
Theories of sequence learning based on temporally asymmetric, Hebbian long-term potentiation predict that during route learning the spatial firing distributions of hippocampal neurons should enlarge in a direction opposite to the animal's movement. On a route AB, increased synaptic drive from cells representing A would cause cells representing B to fire(More)