Bruce L. Goode

Learn More
Formins are a widely expressed family of proteins that govern cell shape, adhesion, cytokinesis, and morphogenesis by remodeling the actin and microtubule cytoskeletons. These large multidomain proteins associate with a variety of other cellular factors and directly nucleate actin polymerization through a novel mechanism. The signature formin homology 2(More)
Formins are required for cell polarization and cytokinesis, but do not have a defined biochemical activity. In Saccharomyces cerevisiae, formins and the actin-monomer-binding protein profilin are specifically required to assemble linear actin structures called 'actin cables'. These structures seem to be assembled independently of the Arp2/3 complex, the(More)
Formin proteins participate in a wide range of cytoskeletal processes in all eukaryotes. The defining feature of formins is a highly conserved approximately 400 residue region, the Formin Homology-2 (FH2) domain, which has recently been found to nucleate actin filaments. Here we report crystal structures of the S. cerevesiae Bni1p FH2 domain. The mostly(More)
Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The(More)
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a(More)
Formins have conserved roles in cell polarity and cytokinesis and directly nucleate actin filament assembly through their FH2 domain. Here, we define the active region of the yeast formin Bni1 FH2 domain and show that it dimerizes. Mutations that disrupt dimerization abolish actin assembly activity, suggesting that dimers are the active state of FH2(More)
BACKGROUND Dynamic remodeling of the actin cytoskeleton requires rapid turnover of actin filaments, which is regulated in part by the actin filament severing/depolymerization factor cofilin/ADF. Two factors that cooperate with cofilin are Srv2/CAP and Aip1. Human CAP enhances cofilin-mediated actin turnover in vitro, but its biophysical properties have not(More)
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous(More)
Longstanding evidence supports a role for actin in endocytosis; an intact actin cytoskeleton is required for endocytosis in yeast, and drugs that inhibit actin polymerization inhibit endocytosis in both yeast and mammalian cells. The yeast Arp2/3 complex is required for the internalization step of endocytosis. In addition, some early endocytic events in(More)
The actin-related protein (Arp) 2/3 complex plays a central role in assembly of actin networks. Because distinct actin-based structures mediate diverse processes, many proteins are likely to make spatially and temporally regulated interactions with the Arp2/3 complex. We have isolated a new activator, Abp1p, which associates tightly with the yeast Arp2/3(More)