Bruce J. Tromberg

Learn More
Hyperspectral cameras provide useful discriminants for human face recognition that cannot be obtained by other imaging methods.We examine the utility of using near-infrared hyperspectral images for the recognition of faces over a database of 200 subjects. The hyperspectral images were collected using a CCD camera equipped with a liquid crystal tunable(More)
Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are(More)
Frequency-domain photon migration (FDPM) is a non-invasive optical technique that utilizes intensity-modulated, near-infrared (NIR) light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, mu(a), and scattering, mu(s)', parameters) derived from FDPM measurements can be used to construct low-resolution (0.5 to 1(More)
The confinement of liposomes and Chinese hamster ovary (CHO) cells by infrared (IR) optical tweezers is shown to result in sample heating and temperature increases by several degrees centigrade, as measured by a noninvasive, spatially resolved fluorescence detection technique. For micron-sized spherical liposome vesicles having bilayer membranes composed of(More)
Multiphoton microscopy relies on nonlinear light-matter interactions to provide contrast and optical sectioning capability for high-resolution imaging. Most multiphoton microscopy studies in biological systems have relied on two-photon excited fluorescence (TPEF) to produce images. With increasing applications of multiphoton microscopy to thick-tissue(More)
Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain(More)
Presurgical chemotherapy is widely used in the treatment of locally advanced breast cancer. Monitoring the response to therapy can improve survival and reduce morbidity. We employ a noninvasive, near-infrared method based on diffuse optical spectroscopy (DOS) to quantitatively monitor tumor response to neoadjuvant chemotherapy. DOS was used to monitor tumor(More)
Diffuse optical imaging (DOI) may be a beneficial diagnostic method for women with mammographically dense breast tissue. In order to evaluate the utility of DOI, we are developing broadband diffuse optical spectroscopy (DOS) to characterize the functional origins of optical signals in breast cancer patients. Broadband DOS combines multifrequency(More)
Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth ( approximately 1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical(More)
Multiphoton microscopy (MPM) holds promise as a noninvasive imaging technique for characterizing collagen structure, and thus mechanical properties, through imaging second harmonic generation (SHG) and two-photon fluorescence in engineered and real connective tissues. Controlling polymerization pH to manipulate collagen gel microstructure, we quantified(More)