Bruce B. Winter

Learn More
The Myf-6 gene, a novel member of the human gene family of muscle determination factors has been detected by its highly conserved sequence coding for a putative helix-loop-helix domain. This sequence motif is a common feature of all Myf factors and other regulatory proteins. The new Myf gene is located on human chromosome 12, approximately 6.5 Kb upstream(More)
Recent genetic and biochemical approaches have advanced our understanding of control mechanisms underlying myogenesis in vertebrate organisms. In particular, systematic combinations of targeted gene disruptions in mice have revealed unique and overlapping functions of members of the MyoD family of transcription factors within the regulatory network that(More)
The human muscle determination factor myf5, like MyoD and other members of the family of skeletal muscle-specific regulatory proteins, contains a highly conserved putative helix-loop-helix domain. In MyoD this motif is required for the initiation of myogenesis in C3H mouse 10T1/2 fibroblasts and other non-muscle cells as well as for transcriptional(More)
Myf-5 and MyoD are members of a family of muscle-specific basic helix-loop-helix (bHLH) proteins that are fundamental for myogenic cell differentiation and transcriptional activation of muscle-specific genes. Here we report that elevated levels of the intracellular signaling molecule cAMP and overexpression of cAMP-dependent protein kinase (PKA) inhibit(More)
Muscle cell development is dependent on the activity of cell type-specific basic-helix-loop-helix transcription factors, MyoD, Myf-5, myogenin, and MRF4 which collaborate with myocyte enhancer factor 2 proteins to activate muscle-specific gene expression. Growth factors and activated Ras prevent differentiation of myoblasts in culture but the downstream(More)
A set of cDNA clones coding for alkali myosin light chains (AMLC) was isolated from fetal human skeletal muscle. Nucleotide sequence analysis and RNA expression patterns of individual clones revealed related sequences corresponding to (i) fast fiber type MLC1 and MLC3; (ii) the embryonic MLC that is also expressed in fetal ventricle and adult atrium(More)
The muscle regulatory protein myogenin accumulates in differentiating muscle cells when the culture medium is depleted for serum. To investigate the regulation of myogenin gene expression, we have isolated and characterized the Myf4 gene which encodes the human homologue of murine myogenin. Serum components, basic FGF (b-FGF), transforming growth factor(More)