Brooke R. Snyder

Learn More
Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and(More)
BACKGROUND Implantation of human multipotent stromal cells from bone marrow (hMSCs) into the dentate gyrus of the hippocampus of mice was previously shown to stimulate proliferation, migration and neural differentiation of endogenous neural stem cells. We hypothesized that hMSCs would be beneficial in a mouse model of Huntington disease (HD) due to these(More)
Until now, interest in dental pulp stem/stromal cell (DPSC) research has centered on mineralization and tooth repair. Beginning a new paradigm in DPSC research, we grafted undifferentiated, untreated DPSCs into the hippocampus of immune-suppressed mice. The rhesus DPSC (rDPSC) line used was established from the dental pulp of rhesus macaques and found to be(More)
Gene therapy for motor neuron diseases requires efficient gene delivery to motor neurons (MNs) throughout the spinal cord and brainstem. The present study compared adeno-associated viral (AAV) vector serotypes 1, 6, 8, and 9 for spinal cord delivery in adult mice, by the intraparenchymal or intrathecal route of administration. Whereas intraparenchymal(More)
Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A(More)
STUDY DESIGN Assessment of long-term surgical risks from multiple intraspinal cell injections. OBJECTIVE To prove that multilevel-targeted cell injection to the spinal cord can be a feasible and safe procedure. SUMMARY OF BACKGROUND DATA Neural cell transplantation has been proposed as a treatment for a variety of neurologic disorders, including(More)
Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's(More)
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve motoneuron somas,(More)
Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron loss leading to paralysis and death. Vascular endothelial growth factor (VEGF) has angiogenic, neurotrophic, and neuroprotective properties, and has preserved neuromuscular function and protected motor neurons in rats engineered to overexpress the human gene coding the mutated G93A form of(More)
Dental pulp stem/stromal cells (DPSCs) are categorized as adult stem cells (ASCs) that retain multipotent differentiation capabilities. DPSCs can be isolated from individuals at any age and are considered to be true personal stem cells, making DPSCs one of the potential options for stem cell therapy. However, the properties of DPSCs from individuals with an(More)