Brooke A. Acton

Learn More
KCC2 is the neuron-specific K+-Cl(-) cotransporter required for maintaining low intracellular Cl(-), which is essential for fast inhibitory synaptic transmission in the mature CNS. Despite the requirement of KCC2 for inhibitory synaptic transmission, understanding of the cellular mechanisms that regulate KCC2 expression and function is rudimentary. We(More)
KCC2 is the neuron-specific member of the of K(+)-Cl(-) cotransporter gene family. It is also the only member of its family that is active under physiologically normal conditions, in the absence of osmotic stress. By extruding Cl(-) from the neuron under isotonic conditions, this transporter maintains a low concentration of neuronal Cl(-), which is(More)
KCC2 is a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast inhibitory synaptic transmission in the mature CNS. Despite the critical role of KCC2 in neurons, the mechanisms regulating its function are not understood. Here, we show that KCC2 is critically regulated by the single-pass transmembrane protein neuropilin(More)
Inhibitory GABAergic synaptic transmission in the mammalian hippocampus depends upon a hyperpolarized reversal potential for Cl(-) (ECl). To examine the regulation of ECl hyperpolarization we cultured hippocampal neurons for two weeks in either a low- or a high-concentration of KCl (2.6 or 18.7 mM, respectively). Neurons were then recorded from standard(More)
Coincident pre- and postsynaptic activity of hippocampal neurons alters the strength of gamma-aminobutyric acid (GABA(A))-mediated inhibition through a Ca(2+)-dependent regulation of cation-chloride cotransporters. This long-term synaptic modulation is termed GABAergic spike-timing dependent plasticity (STDP). In the present study, we examined whether the(More)
  • 1