Learn More
Electrical activity is the ultimate functional measure of neuronal tissue and recording that activity remains a key technical challenge in neuroscience. The mechanical mismatch between rigid electrodes and compliant brain tissue is a critical limitation in applications where movement is an inherent component. An electrode that permits recording of neural(More)
OBJECTIVE We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. APPROACH Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these(More)
Underbody blast (UBB) events created by improvised explosive devices are threats to warfighter survivability. High intensity blast waves emitted from these devices transfer large forces through vehicle structures to occupants, often resulting in injuries including debilitating spinal fractures. The vertical loading vector through the spine generates(More)
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to(More)
— Existing brain-computer interface (BCI) control of highly dexterous robotic manipulators and prosthetic devices typically rely solely on neural decode algorithms to determine the user's intended motion. Although these approaches have made significant progress in the ability to control high degree of freedom (DOF) manipulators, the ability to perform(More)
An open-label, randomized, comparative, multi-centre study was conducted at 25 centres in the USA and Canada to compare the safety and efficacy of piperacillin/tazobactam plus tobramycin with ceftazidime plus tobramycin in patients with lower respiratory tract infections. Piperacillin/tazobactam (3 g/375 mg) every 4 h or ceftazidime (2 g) every 8 h were(More)
— Effective user control of highly dexterous and robotic assistive devices requires intuitive and natural modalities. Although surgically implanted brain-computer interfaces (BCIs) strive to achieve this, a number of non-invasive engineering solutions may provide a quicker path to patient use by eliminating surgical implantation. We present the development(More)
Intracranial electroencephalographic (iEEG) signals from two human subjects were used to achieve simultaneous neural control of reaching and grasping movements with the Johns Hopkins University Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL), a dexterous robotic prosthetic arm. We performed functional mapping of high gamma activity while the(More)
This paper presents the successful design, fabrication, and packaging of a mechanically actuated micro-electro-mechanical-systems (MEMS) microtweezer, and its use in a variety of biological environments. This complete and low cost MEMS system has minimal manufacturing complexity and it can be augmented to any standard micromanipulator or positioning system.(More)
Brain-machine interfaces (BMIs) are a rapidly progressing technology with the potential to restore function to victims of severe paralysis via neural control of robotic systems. Great strides have been made in directly mapping a user's cortical activity to control of the individual degrees of freedom of robotic end-effectors. While BMIs have yet to achieve(More)