Learn More
A standardized test was developed to evaluate posture, movement, gait, sitting posture, and respiration of patients with psychosomatic disorders, based on the Mensendieck principles of observation and analysis of motor function. To validate the test and to make a comprehensive body examination of a defined group of patients, it was applied in a study of(More)
OBJECTIVE To determine the efficacy of a serotonin receptor (5-HT(3)) antagonist in the treatment of fibromyalgia (FM) in a prospective, randomized, double-blind, placebo-controlled, multicentre trial. METHODS Twenty-one female patients (age 21-63 years) with FM according to the American College of Rheumatology classification criteria for FM were assigned(More)
Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray(More)
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell(More)
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied,(More)
We present the first in-target measurements of the electrons produced by an ultraintense ͑I. 10 19 W͞cm 2 ͒ laser pulse incident on a massive solid target. Total conversion efficiency, mean electron energy, and electron cone-angle measurements are presented. A relationship between the target material and the mean electron energy is also discussed.(More)
We present the first x-ray scattering measurements of the state of compression and heating in laser irradiated solid beryllium. The scattered spectra at two different angles show Compton and plasmon features indicating a dense Fermi-degenerate plasma state with a Fermi energy above 30 eV and with temperatures in the range of 10-15 eV. These measurements(More)
Pyrometric measurements of single-shock-compressed liquid deuterium reveal that shock front temperatures T increase from 0.47 to 4.4 eV as the pressure P increases from 31 to 230 GPa. Where deuterium becomes both conducting and highly compressible, 30< or =P< or =50 GPa, T is lower than most models predict and T<<T(Fermi), proving that deuterium is a(More)
First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ=140  μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode(More)
We present measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e., soft x-ray wall reemission) is most(More)