Brigitte Servatius

Learn More
Configurations of points in the plane constrained by directions only or by lengths alone lead to equivalent theories known as parallel drawings and infinitesimal rigidity of plane frameworks. We combine these two theories by introducing a new matroid on the edge set of the complete graph with doubled edges to describe the combinatorial properties of(More)
We introduce the idea of Assur graphs, a concept originally developed and exclusively employed in the literature of the kinematics community. The paper translates the terminology, questions, methods and conjectures from the kinematics terminology for one degree of freedom linkages to the terminology of Assur graphs as graphs with special properties in(More)
Laman's characterization of minimally rigid 2-dimensional generic frameworks gives a matroid structure on the edge set of the underlying graph, as was first pointed out and exploited by L. Lovász and Y. Yemini. Global rigidity has only recently been characterized by a combination of two results due to T. Jordán and the first named author, and R. Connelly,(More)
Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with <i>pointed</i> vertices (incident to an angle larger than <i>p</i>). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial(More)
—A web-enabled laboratory provides remote access to state of the art equipment. The use of web-enabled laboratories in undergraduate education has dramatically increased over the past six years, but no criteria have been established to assess the quality of this new teaching tool. We identify ten vital components any successful web-enabled laboratory should(More)
Rigidity We are all familiar with frameworks of rods attached at joints. A rod and joint framework gives rise to a simple mathematical model consisting of line segments in Euclidean 3-space with common endpoints. A deformation is a continuous one-parameter family of such frameworks. If a framework has only trivial deformations , e.g. translations and(More)