Brigitte Eisensamer

Learn More
Antidepressants are commonly supposed to enhance serotonergic and/or noradrenergic neurotransmission by inhibition of neurotransmitter reuptake through binding to the respective neurotransmitter transporters or through inhibition of the monoamine oxidase. Using the concentration-clamp technique and measurements of intracellular Ca2+, we demonstrate that(More)
The widely used atypical antipsychotic clozapine is a potent competitive antagonist at 5-HT(3) receptors which may contribute to its unique psychopharmacological profile. Clozapine binds to 5-HT(3) receptors of various species. However, the structural requirements of the respective binding site for clozapine remain to be determined. Differences in the(More)
Homomeric complexes of 5-HT(3A) receptor subunits form a ligand-gated ion channel. This assembly does not fully reproduce the biophysical and pharmacological properties of native 5-HT(3) receptors which might contain the recently cloned 5-HT(3B) receptor subunit. In the present study, heteromeric assemblies containing human 5-HT(3A) and 5-HT(3B) subunits(More)
Cochlear and lagenar components of the statoacoustical ganglion in the inner ear of one chicken were studied quantitatively in the TEM. Both myelinated and unmyelinated nerve fibers were present in these two parts of the ganglion and in a putative efferent bundle within the ganglion. The cochlear portion had the lowest, the efferent bundle the highest(More)
The convulsant effects of alpha-thujone, the psychotropic component of absinthe, were attributed to inhibitory actions at the GABAA receptor. Here, we investigated for the first time the 5-HT3 receptor as a potential site of the psychotropic actions of alpha-thujone. This cation permeable ligand-gated ion channel shows considerable homology to the GABAA(More)
Despite different chemical structure and pharmacodynamic signaling pathways, a variety of antidepressants and antipsychotics inhibit ion fluxes through 5-HT3 receptors in a noncompetitive manner with the exception of the known competitive antagonists mirtazapine and clozapine. To further investigate the mechanisms underlying the noncompetitive inhibition of(More)
The serotonin type 3 (5-HT(3)) receptor is the only ligand-gated ion channel receptor for serotonin (5-HT). 5-HT(3) receptors play an important role in modulating the inhibitory action of dopamine in mesocorticolimbic brain regions. Neuroleptic drugs are commonly thought to exert their psychopharmacological action mainly through dopamine and serotonin type(More)
This study investigates the relationship between the circadian clock and metabolism based on recordings of the extracellular pH in cultures of the marine dinoflagellate, Gonyaulax polyedra. In light-dark cycles, pH of the medium rises during the light phase and declines in the dark. The amplitude of this pH-rhythm correlates with light intensity, indicating(More)
The mechanisms of the biological clock are today being investigated in single neurons in cell culture or in unicellular and in other microorganisms. The results show that all components of this "endogenous clock" can be found at the cellular level. The cellular circadian program is controlled by a complex system of biochemical reactions, which can contain(More)
  • 1