#### Filter Results:

#### Publication Year

2002

2015

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

We are interested in the asymptotic analysis of the binary search tree (BST) under the random permutation model. Via an embedding in a continuous time model, we get new results, in particular the asymptotic behavior of the profile.

A classical random walk (S t , t ∈ N) is defined by S t := t n=0 X n , where (X n) are i.i.d. When the increments (X n) n∈N are a one-order Markov chain, a short memory is introduced in the dynamics of (S t). This so-called " persistent " random walk is nolonger Markovian and, under suitable conditions, the rescaled process converges towards the integrated… (More)

We present new links between some remarkable martin-gales found in the study of the Binary Search Tree or of the bisection problem, looking at them on the probability space of a continuous time binary branching process.

We consider boolean functions over n variables. Any such function can be represented (and computed) by a complete binary tree with and or or in the internal nodes and a literal in the external nodes, and many different trees can represent the same function, so that a fundamental question is related to the so-called complexity of a boolean function: L(f) :=… (More)

- Brigitte Chauvin, Nicolas Pouyanne, Reda Sahnoun
- 2009

We consider a two colors Pólya urn with balance S. Assume it is a large urn i.e. the second eigenvalue m of the replacement matrix satisfies 1/2 < m/S ≤ 1. After n drawings, the composition vector has asymptotically a first deterministic term of order n and a second random term of order n m/S. The object of interest is the limit distribution of this random… (More)

We present new links between some remarkable martingales found in the study of the Binary Search Tree or of the bisection problem, looking at them on the probability space of a continuous time binary branching process.

Let m ≥ 3 be an integer. The so-called m-ary search tree is a discrete time Markov chain which is very popular in theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-known phase transition: when m ≤ 26, the asymptotic behavior of the process is Gaussian, but for m ≥ 27 it is no longer… (More)

The purpose of this article is to show that the distribution of the longest fragment in the random multisection problem after k steps and the height of m-ary search trees (and some extensions) are not only closely related in a formal way but both can be asymptotically described with the same distribution function that has to be shifted in a proper way… (More)

We define a probability distribution over the set of Boolean functions of k variables induced by the tree representation of Boolean expressions. The law we are interested in is inspired by the growth model of Binary Search Trees: we call it the growing tree law. We study it over different logical systems and compare the results we obtain to already known… (More)