Brigitte Canton

Learn More
The ERK 1/2 MAP kinase pathway controls cell growth and survival and modulates integrin function. Here, we report that PEA-15, a protein variably expressed in multiple cell types, blocks ERK-dependent transcription and proliferation by binding ERKs and preventing their localization in the nucleus. PEA-15 contains a nuclear export sequence required for its(More)
Apoptosis is a very general phenomenon, but only a few reports concern astrocytes. Indeed, astrocytes express receptors for tumor necrosis factor (TNF) alpha, a cytokine demonstrated on many cells and tissues to mediate apoptosis after recruitment of adaptor proteins containing a death effector domain (DED). PEA-15 is a DED-containing protein prominently(More)
Astrocyte death has been implicated in several neuropathological diseases, but the identification of molecules susceptible of promoting astrocyte survival has been elusive. We investigated whether transforming growth factor alpha (TGFalpha), an erbB1/EGFR ligand, which promotes glioma progression and affects astrocyte metabolism at embryonic and adult(More)
Phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) is an abundant phosphoprotein in primary cultures of mouse brain astrocytes. Its capability to interact with members of the apoptotic and mitogen activated protein (MAP) kinase cascades endows PEA-15 with anti-apoptotic and anti-proliferative properties. We analyzed the in vivo cellular sources of(More)
Phosphoprotein enriched in astrocytes-15 kDa (PEA-15), a phosphoprotein enriched in astrocytes, inhibits both apoptosis and proliferation in normal and cancerous cells. Here, analysis of PEA-15 expression in glioblastoma organotypic cultures revealed low levels of PEA-15 in tumor cells migrating away from the explants, regardless of the expression levels in(More)
Angiotensin II (AngII) type 1 receptors (AT1) regulate cell growth through the extracellular signal-regulated kinase (ERK)1/2 and phosphatidylinositol 3-kinase (PI3K) pathways. ERK1/2 and Akt/protein kinase B, downstream of PI3K, are independently activated but both required for mediating AngII-induced proliferation when expressed at endogenous levels. We(More)
PEA-15 is a small protein (15 kDa) that was first identified as an abundant phosphoprotein in brain astrocytes and subsequently shown to be widely expressed in different tissues and highly conserved among mammals. It is composed of an N-terminal death effector domain (DED) and a C-terminal tail of irregular structure. PEA-15 is regulated by multiple(More)
  • 1