Bridget R. Kulasekara

Learn More
The opportunistic pathogen Pseudomonas aeruginosa causes a variety of acute and chronic infections. We identified a gene whose inactivation results in attenuation of virulence due to premature activation of genes involved in biofilm formation and coordinate repression of genes required for initial colonization. This gene, retS, encodes a hybrid sensor(More)
Biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa requires the expression of a number of surface adhesive components. The expression of surface organelles facilitating biofilm formation is controlled by environmental signals acting through transcriptional regulatory networks. We analysed the expression of a family of P. aeruginosa(More)
Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of causing a variety of life-threatening human infections. The genetic basis for preferential infection of certain immunocompromised patients or individuals with cystic fibrosis by P. aeruginosa is not understood. To establish whether variation in the genomic repertoire of P. aeruginosa(More)
The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) regulates cellular motility and the synthesis of organelles and molecules that promote adhesion to a variety of biological and nonbiological surfaces. These properties likely require tight spatial and temporal regulation of c-di-GMP concentration. We have developed genetically(More)
In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E.(More)
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant.(More)
MobilomeFINDER ( is an interactive online tool that facilitates bacterial genomic island or 'mobile genome' (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate 'inferred contigs' produced by(More)
BACKGROUND Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually results in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different phenotypes in vitro that(More)
Individual cell heterogeneity is commonly observed within populations, although its molecular basis is largely unknown. Previously, using FRET-based microscopy, we observed heterogeneity in cellular c-di-GMP levels. In this study, we show that c-di-GMP heterogeneity in Pseudomonas aeruginosa is promoted by a specific phosphodiesterase partitioned after cell(More)
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that serves as a barrier to the environment. During infection, Gram-negative bacteria remodel their OM to promote survival and replication within host tissues. Salmonella rely on the PhoPQ two-component regulators to coordinate OM remodeling in response to environmental cues.(More)