Learn More
The prostacyclin receptor (IP) is primarily coupled to G alpha(s)-dependent activation of adenylyl cyclase; however, a number of studies indicate that the IP may couple to other secondary effector systems perhaps in a species-specific manner. In the current study, we investigated the specificity of G protein:effector coupling by the mouse (m) IP(More)
The human thromboxane A2 receptor (TP), a G protein-coupled receptor, exists as two isoforms, TPalpha and TPbeta, which arise by alternative mRNA splicing and differ exclusively in their carboxyl terminal cytoplasmic regions. In this study, a reverse transcriptase-polymerase chain reaction (RT-PCR)-based strategy was developed to examine the expression of(More)
Since its discovery in 1975, we now have a wealth of knowledge relating to the biochemical, pharmacological and physiological actions of thromboxane A(2) (TXA(2)) and its related metabolites. These molecular insights have been greatly expedited by the molecular cloning and characterization of a cDNA for the human TXA(2) receptor, now termed the T Prostanoid(More)
The alpha and beta isoforms of the thromboxane A2 receptor (TP) mediate the actions of the prostanoid thromboxane A2 and its mimetics in humans. The amino terminal region of the TPs contains two consensus N-linked glycosylation sites at asparagine (N) residues N4 and N16. In this study, we explored the significance of N-linked glycosylation on the signaling(More)
To establish whether the thromboxane A2 (TXA2) receptor (TP) functionally couples to the Gq family of heterotrimeric G proteins in vivo, we have coexpressed the cDNAs coding for the human platelet/placental TP alpha isoform (TP alpha) and the alpha subunits of Gq or G11 in human embryonic kidney (HEK) 293 cells. TP activation in response to ligand(More)
Both thromboxane (TX) A(2) and 8-epi prostaglandin (PG) F(2alpha) have been reported to stimulate mitogenesis of vascular smooth muscle (SM) in a number of species. However, TXA(2) and 8-epiPGF(2alpha) mediated mitogenic signalling has not been studied in detail in human vascular SM. Thus, using the human uterine ULTR cell line as a model, we investigated(More)
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the(More)
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization but the mechanisms regulating its intracellular trafficking and/or recycling to the plasma membrane are poorly understood. Herein, we conducted a yeast-two-hybrid screen to identify proteins interacting with the carboxyl-terminal (C)-tail domain of the hIP and discovered a novel(More)
We recently identified a novel mechanism explaining how the mouse (m) prostacyclin receptor (IP) couples to Galpha(s), Galpha(i), and Galpha(q) (Lawler, O. A., Miggin, S. M., and Kinsella, B. T. (2001) J. Biol. Chem. 276, 33596-33607) whereby mIP coupling to Galpha(i) and Galpha(q) is dependent on its initial coupling to Galpha(s) and subsequent(More)
Prostacyclin is increasingly implicated in re-endothelialization and angiogenesis but through largely unknown mechanisms. Herein the high-density lipoprotein (HDL) scavenger receptor class B, type 1 (SR-B1) adapter protein PDZ domain-containing protein 1 (PDZK1) was identified as an interactant of the human prostacyclin receptor (hIP) involving a Class I(More)