Learn More
The contrast-to-noise ratio (CNR) was used to determine the detectability of objects within reconstructed images from diffuse near-infrared tomography. It was concluded that there was a maximal value of CNR near the location of an object within the image and that the size of the true region could be estimated from the CNR. Experimental and simulation(More)
Near-infrared spectroscopic tomography was used to measure the properties of 24 mammographically normal breasts to quantify whole-breast absorption and scattering spectra and to evaluate which tissue composition characteristics can be determined from these spectra. The absorption spectrum of breast tissue allows quantification of (i) total hemoglobin(More)
Subsurface tomography with diffuse light has been investigated with a noncontact approach to characterize the performance of absorption and fluorescence imaging. Using both simulations and experiments, the reconstruction of local subsurface heterogeneity is demonstrated, but the recovery of target size and fluorophore concentration is not linear when(More)
Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide(More)
OBJECT The aim of this study was to investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters in 11 cases of newly diagnosed glioblastoma multiforme (GBM) treated using protoporphyrin IX (PpIX) fluorescence-guided resection. METHODS In 11 patients with a newly diagnosed GBM,(More)
Diffuse optical tomography, also known as near infrared tomography, has been under investigation, for non-invasive functional imaging of tissue, specifically for the detection and characterization of breast cancer or other soft tissue lesions. Much work has been carried out for accurate modeling and image reconstruction from clinical data. NIRFAST, a(More)
Three-dimensional (3D), multiwavelength near-infrared tomography has the potential to provide new physiological information about biological tissue function and pathological transformation. Fast and reliable measurements of multiwavelength data from multiple planes over a region of interest, together with adequate model-based nonlinear image reconstruction,(More)
Near-infrared (NIR) optical tomography provide estimates of the internal distribution of optical absorption and transport scattering from boundary measurement of light propagation within biological tissue. Although this is a truly three-dimensional (3D) imaging problem, most research to date has concentrated on two-dimensional modeling and image(More)
Near-infrared imaging was used to quantify typical values of hemoglobin concentration, oxygen saturation, water fraction, scattering power, and scattering amplitude within the breast tissue of volunteer subjects. A systematic study of the menstrual variations in these parameters was carried out by measuring a group of seven premenopausal normal women (aged(More)
Diffuse optical tomography (DOT) involves estimation of tissue optical properties using noninvasive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and ill-determined problem, so overcoming these difficulties requires regularization of the solution. While the methods developed for solving the DOT image reconstruction(More)