Brian W. Goldman

Learn More
We present the results of a community survey regarding genetic programming benchmark practices. Analysis shows broad consensus that improvement is needed in problem selection and experimental rigor. While views expressed in the survey dissuade us from proposing a large-scale benchmark suite, we find community support for creating a “blacklist” of problems(More)
Real world applications of evolutionary techniques are often hindered by the need to determine problem specific parameter settings. While some previous methods have reduced or removed the need for parameter tuning, many do so by trading efficiency for general applicability. The Parameter-less Population Pyramid (P3) is an evolutionary technique that(More)
In this paper we examine how Cartesian Genetic Programming's (CGP's) method for encoding directed acyclic graphs (DAGs) and its mutation operator bias the effective length of individuals as well as the distribution of inactive nodes in the genome. We investigate these biases experimentally using two CGP variants as comparisons: <i>Reorder</i>, a method for(More)
Unlike black-box optimization problems, gray-box optimization problems have known, limited, non-linear relationships between variables. Though more restrictive, gray-box problems include many real-world applications in network security, computational biology, VLSI design, and statistical physics. Leveraging these restrictions, the Hamming-Ball Hill Climber(More)
This article investigates Gray Box Optimization for pseudo-Boolean optimization problems composed of M subfunctions, where each subfunction accepts at most k variables. We will refer to these as Mk Landscapes. In Gray Box Optimization, the optimizer is given access to the set of M subfunctions. We prove Gray Box Optimization can efficiently compute(More)
Crossover is a core genetic operator in many evolutionary algorithms (EAs). The performance of such EAs on a given problem is dependent on properly configuring crossover. A small set of common crossover operators is used in the vast majority of EAs, typically fixed for the entire evolutionary run. Selecting which crossover operator to use and tuning its(More)
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of(More)