Brian W. Goldman

Learn More
We present the results of a community survey regarding genetic programming benchmark practices. Analysis shows broad consensus that improvement is needed in problem selection and experimental rigor. While views expressed in the survey dissuade us from proposing a large-scale benchmark suite, we find community support for creating a “blacklist” of problems(More)
Discovering and exploiting the linkage between genes during evolutionary search allows the Linkage Tree Genetic Algorithm (LTGA) to maximize crossover effectiveness, greatly reducing both population size and total number of evaluations required to reach success on decomposable problems. This paper presents a comparative analysis of the most prominent LTGA(More)
In this paper we examine how Cartesian Genetic Programming's (CGP's) method for encoding directed acyclic graphs (DAGs) and its mutation operator bias the effective length of individuals as well as the distribution of inactive nodes in the genome. We investigate these biases experimentally using two CGP variants as comparisons: <i>Reorder</i>, a method for(More)
Unlike black-box optimization problems, gray-box optimization problems have known, limited, non-linear relationships between variables. Though more restrictive, gray-box problems include many real-world applications in network security, computational biology, VLSI design, and statistical physics. Leveraging these restrictions, the Hamming-Ball Hill Climber(More)
The parameter-less population pyramid (P3) is a recently introduced method for performing evolutionary optimization without requiring any user-specified parameters. P3's primary innovation is to replace the generational model with a pyramid of multiple populations that are iteratively created and expanded. In combination with local search and advanced(More)
Automatically configuring and dynamically controlling an Evolutionary Algorithm's (EA's) parameters is a complex task, yet doing so allows EAs to become more powerful and require less problem specific tuning to become effective. Supportive Coevolution is a new form of Evolutionary Algorithm (EA) that uses multiple populations to overcome the limitations of(More)