Learn More
We present the results of a community survey regarding genetic programming benchmark practices. Analysis shows broad consensus that improvement is needed in problem selection and experimental rigor. While views expressed in the survey dissuade us from proposing a large-scale benchmark suite, we find community support for creating a “blacklist” of problems(More)
In this paper we examine how Cartesian Genetic Programming's (CGP's) method for encoding directed acyclic graphs (DAGs) and its mutation operator bias the effective length of individuals as well as the distribution of inactive nodes in the genome. We investigate these biases experimentally using two CGP variants as comparisons: <i>Reorder</i>, a method for(More)
Discovering and exploiting the linkage between genes during evolutionary search allows the Linkage Tree Genetic Algorithm (LTGA) to maximize crossover effectiveness, greatly reducing both population size and total number of evaluations required to reach success on decomposable problems. This paper presents a comparative analysis of the most prominent LTGA(More)
Crossover is a core genetic operator in many evolutionary algorithms (EAs). The performance of such EAs on a given problem is dependent on properly configuring crossover. A small set of common crossover operators is used in the vast majority of EAs, typically fixed for the entire evolutionary run. Selecting which crossover operator to use and tuning its(More)
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of(More)
Unlike black-box optimization problems, gray-box optimization problems have known, limited, non-linear relationships between variables. Though more restrictive, gray-box problems include many real-world applications in network security, computational biology, VLSI design, and statistical physics. Leveraging these restrictions, the Hamming-Ball Hill Climber(More)
The parameter-less population pyramid (P3) is a recently introduced method for performing evolutionary optimization without requiring any user-specified parameters. P3's primary innovation is to replace the generational model with a pyramid of multiple populations that are iteratively created and expanded. In combination with local search and advanced(More)