Learn More
The canine disease, X-linked progressive retinal atrophy (XLPRA), is similar to human RP3, an X-linked form of retinitis pigmentosa, and maps to the same region in the X chromosome. Analysis of the physical map of the XLPRA and RP3 intervals shows a high degree of conservation in terms of genes and their order. We have found different mutations in exon(More)
PURPOSE The retinitis pigmentosa guanosine triphosphatase (GTPase) regulator (RPGR) is essential for photoreceptor survival. There is as yet no consensus concerning the subcellular localization of RPGR. This study was undertaken as a comprehensive effort to resolve current controversies. METHODS RPGR in mice and other mammalian species was examined by(More)
The ORF15 isoform of RPGR (RPGR(ORF15)) and RPGR interacting protein 1 (RPGRIP1) are mutated in a variety of retinal dystrophies but their functions are poorly understood. Here, we show that in cultured mammalian cells both RPGR(ORF15) and RPGRIP1 localize to centrioles. These localizations are resistant to the microtubule destabilizing drug nocodazole and(More)
Late-onset retinal macular degeneration (L-ORMD) is an autosomal dominant condition resembling age-related macular degeneration (AMD) in which a key pathological feature is a thick extracellular sub-retinal pigment epithelial (RPE) deposit. L-ORMD is caused by mutation in the C1QTNF5 (CTRP5) short-chain collagen gene, but the disease mechanism is unknown.(More)
PURPOSE Mutations in the retinitis pigmentosa (RP) GTPase regulator (RPGR) gene account for more than 70% of X-linked RP cases. This study aims to characterize the proximal promoter region of the human RPGR gene. METHODS The 5'-flanking region (5 kb) of human RPGR was cloned and sequenced. A potential transcription start site and transcription factor(More)
PURPOSE The present study examined the developmental and tissue expression of the retinitis pigmentosa GTPase regulator (RPGR) gene in Xenopus laevis. METHODS The cDNA for X. laevis RPGR (XRPGR) was isolated from adult eye mRNA by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The deduced peptide sequence(More)
The role of oxidative stress within photoreceptors (PRs) in inherited photoreceptor degeneration (IPD) is unclear. We investigated this question using four IPD mouse models (Pde6b(rd1/rd1), Pde6b(atrd1/atrd1), Rho(-/-) and Prph2(rds/rds)) and compared the abundance of reduced glutathione (GSH) and the activity of mitochondrial NADH:ubiquinone oxidoreductase(More)
A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in(More)
A unifying hypothesis is proposed for the mechanism of insulin action in adipose tissue. Insulin both induces displacement of Ca++ from a membrane-bound pool and inhibits efflux of the ion, thereby facilitating a rise in intracellular free Ca++ concentration. The former effect could enhance the transport of substrates and ions into the cell, while the(More)
  • 1