Learn More
Network-on-Chips (NoCs) are becoming integral parts of modern microprocessors as the number of cores and modules integrated on a single chip continues to increase. Research and development of future NoC technology relies on accurate modeling and simulations to evaluate the performance impact and analyze the cost of novel NoC architectures. In this work, we(More)
In this paper, we present three algorithms that provide performance guarantees for scheduling switches, such as optical switches, with configuration overhead. Each algorithm emulates an unconstrained (zero overhead) switch by accumulating a batch of configuration requests and generating a corresponding schedule for a constrained switch. Speedup is required(More)
The ability to perform long, accurate molecular dynamics (MD) simulations involving proteins and other biological macro-molecules could in principle provide answers to some of the most important currently outstanding questions in the fields of biology, chemistry and medicine. A wide range of biologically interesting phenomena, however, occur over time(More)
Media applications, such as image processing, signal processing, video, and graphics, require high computation rates and data bandwidths. The stream programming model is a natural and powerful way to describe these applications. Expressing media applications in this model allows hardware and software systems to take advantage of their concurrency and(More)
Evolving semiconductor and circuit technology has greatly increased the pin bandwidth available to a router chip. In the early 90s, routers were limited to 10Gb/s of pin bandwidth. Today 1Tb/s is feasible, and we expect 20Tb/s of I/O bandwidth by 2010. A high-radix router that provides many narrow ports is more effective in converting pin bandwidth to(More)
This paper presents an algorithm to find a worst-case traffic pattern for any oblivious routing algorithm on an arbitrary interconnection network topology. The linearity of channel loading offered by oblivious routing algorithms enables the problem to be mapped to a bipartite maximum-weight matching, which can be solved in polynomial time for most practical(More)
We introduce a load-balanced adaptive routing algorithm for torus networks, GOAL - Globally Oblivious Adaptive Locally - that provides high throughput on adversarial traffic patterns, matching or exceeding fully randomized routing and exceeding the worst-case performance of Chaos [2], RLB [14], and minimal routing [8] by more than 40%. GOAL also preserves(More)