Brian T. Gleeson

Learn More
A variety of tasks could benefit from the availability of direction cues that do not rely on vision or sound. The application of tangential skin displacement at the fingertip has been found to be a reliable means of communicating direction and has potential to be rendered by a compact device. Our lab has conducted experiments exploring the use of this type(More)
Application of tangential skin displacement at the fingertip has been shown to be effective in communicating direction and has potential for several applications. We have developed a portable, fingertip-mounted tactile display capable of displacing and stretching the skin of the fingerpad, using a 7 mm hemispherical tactor. In vivo tests of fingerpad skin(More)
This paper reports on a series of user experiments evaluating the design of a multimodal test platform capable of rendering visual, audio, vibrotactile, and directional skin-stretch stimuli. The test platform is a handheld, wirelessly controlled device that will facilitate experiments with mobile users in realistic environments. Stimuli rendered by the(More)
Tactile feedback could replace or augment visual and auditory communication in a range of important applications. This paper advances the field of tactile communication by presenting performance data on a variety of tactors and a finger restraint that is suitable for use in portable devices. Tactors, the contact elements between the device and the skin, and(More)
In this paper, we show that a simple haptic device can accurately guide users through planar hand movements. The device guides the user through skin stretch feedback on the fingerpad of the user's index finger. In an angle matching test evaluating two types of stimuli, users are able to discriminate between eight stimulus directions and match the motion of(More)
In this paper we provide empirical evidence that using humanlike gaze cues during human-robot handovers can improve the timing and perceived quality of the handover event. Handovers serve as the foundation of many human-robot tasks. Fluent, legible handover interactions require appropriate nonverbal cues to signal handover intent, location and timing.(More)
Human-robot collaborative work has the potential to advance quality, efficiency and safety in manufacturing. In this paper we present a gestural communication lexicon for human-robot collaboration in industrial assembly tasks and establish methodology for producing such a lexicon. Our user experiments are grounded in a study of industry needs, providing(More)
To address the limited dexterous workspace of the human hand, we have developed the Active Handrest. This device assists in precision manipulation tasks by extending a user’s dexterous workspace while providing ergonomic support for reduced fatigue. People use handrests to complete dexterous activities as routine as providing a signature. However, the(More)