Brian T David

Learn More
Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist,(More)
Toll-like receptors (TLRs) mediate the induction of the innate immune system in response to pathogens, injury and disease. However, they also play non-immune roles and are expressed in the central nervous system (CNS) during prenatal and postnatal stages including adulthood. Little is known about their roles in the CNS in the absence of pathology. Several(More)
Epidemiological studies have associated infection during pregnancy with increased risk of neurodevelopmental disorders in children, which is modeled in rodents by stimulating the immune system of pregnant dams with microorganisms or their mimics, such as poly(I:C) or LPS. In two prenatal mouse models, we show that in utero exposure of the fetus to(More)
Directional asymmetry (DA) biases the analysis of fluctuating asymmetry (FA) mainly because among-individual differences in the predisposition for DA are difficult to detect. However, we argue that systematic bias mainly results from predictable associations between signed right-left asymmetry and other factors, i.e. from systematic variation in DA. We here(More)
Toll-like receptors (TLRs) are mediators of the innate immune response to exogenous pathogens. They have also been implicated in sterile inflammation associated with systemic injury and non-infectious diseases via binding of endogenous ligands, possibly released by damaged cells. Emerging evidence indicates that some TLRs play a role in nervous system(More)
The physiological importance of cell motility has resulted in intense efforts dedicated towards deconstructing its molecular control mechanisms. Most research employs qualitative approaches, yet quantitative understanding of how altering the function of genes or proteins changes migration responses is critical for engineering therapies targeting(More)
  • 1