Brian Space

Learn More
Photothermal methods permit measurement of molecular volume changes of solvated molecules over nanosecond timescales. Such experiments are an important tool in investigating complex biophysical phenomena including identifying transient species in solution. Developing a microscopic understanding of the origin of volume changes in the condensed phase is(More)
The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification(More)
In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at(More)
An improved time correlation function (TCF) description of sum frequency generation (SFG) spectroscopy was developed and applied to theoretically describing the spectroscopy of the ambient water/vapor interface. A more general TCF expression than was published previously is presented-it is valid over the entire vibrational spectrum for both the real and(More)
We report rigorous quantum five-dimensional (5D) calculations of the coupled translation-rotation (T-R) eigenstates of a H(2) molecule adsorbed in metal organic framework-5 (MOF-5), a prototypical nanoporous material, which was treated as rigid. The anisotropic interactions between H(2) and MOF-5 were represented by the analytical 5D intermolecular(More)
Pillar substitution in a long-known metal-organic material with saturated metal centres, [Cu(bipy)(2)(SiF(6))](n), has afforded the first crystallographically characterized porous materials based upon TiF(6)(2-) and SnF(6)(2-) anions as pillars. Gas adsorption studies revealed similar surface areas and adsorption isotherms but enhanced selectivity towards(More)
Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn(2+) ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The(More)
A novel 4(8).6(7) topology metal-organic material (MOM) platform of formula [M(bpe)(2)(M'O(4))] (M = Co or Ni; bpe = 1,2-bis(4-pyridyl)ethene; M' = Mo or Cr) has been synthesized and evaluated in the context of gas sorption. These MOMs have been assigned RCSR code mmo and are uninodal 6-connected nets. [Ni(bpe)(2)(MoO(4))], MOOFOUR-1-Ni, and its chromate(More)
A theory describing the third-order response function R((3))(t(1),t(2),t(3)), which is associated with two-dimensional infrared (2DIR) spectroscopy, has been developed. R((3)) can be written as sums and differences of four distinct quantum mechanical dipole (multi)time correlation functions (TCF's), each with the same classical limit; the combination of(More)