Brian Space

Learn More
The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification(More)
Theoretical approximations to the sum frequency vibrational spectroscopy (SFVS) of the carbon tetrachloride/water interface are constructed using the quantum-corrected time correlation functions (TCF) to aid in interpretation of experimental data and to predict novel vibrational modes. Instantaneous normal mode (INM) methods are used to characterize the(More)
Monte Carlo simulations were performed modeling hydrogen sorption in a recently synthesized metal-organic framework material (MOF) that exhibits large molecular hydrogen uptake capacity. The MOF is remarkable because at 78 K and 1.0 atm it sorbs hydrogen at a density near that of liquid hydrogen (at 20 K and 1.0 atm) when considering H2 density in the(More)
We report the synthesis, structure, and sorption properties of a family of eight diamondoid (dia) metal-organic materials (MOMs) that are sustained by Co(II) or Zn(II) cations linked by one of three rigid ligands: 4-(2-(4-pyridyl)ethenyl)benzoate (1), 4-(pyridin-4-yl)benzoate (2), and 4-(pyridin-4-yl)acrylate (3). Pore size control in this family of dia(More)
Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic(More)
The use of WO4(2-) instead of CrO4(2-) or MoO4(2-) as an angular pillar in topology nets has afforded two isostructural porous nets of formula [M(bpe)2WO4] (M = Co or Ni, bpe = 1,2-(4-pyridyl)ethene). The Ni variant, WOFOUR-1-Ni, is highly selective towards CO2 thanks to its exceptionally high isosteric heat of adsorption (Qst) of -65.5 kJ mol(-1) at zero(More)
A novel 4(8).6(7) topology metal-organic material (MOM) platform of formula [M(bpe)(2)(M'O(4))] (M = Co or Ni; bpe = 1,2-bis(4-pyridyl)ethene; M' = Mo or Cr) has been synthesized and evaluated in the context of gas sorption. These MOMs have been assigned RCSR code mmo and are uninodal 6-connected nets. [Ni(bpe)(2)(MoO(4))], MOOFOUR-1-Ni, and its chromate(More)
A highly accurate aniostropic intermolecular potential for diatomic hydrogen has been developed that is transferable for molecular modeling in heterogeneous systems. The potential surface is designed to be efficacious in modeling mixed sorbates in metal-organic materials that include sorption interactions with charged interfaces and open metal sites. The(More)
The fifth order, two-dimensional Raman response in liquid xenon is calculated via a time correlation function (TCF) theory and the numerically exact finite field method. Both employ classical molecular dynamics simulations. The results are shown to be in excellent agreement, suggesting the efficacy of the TCF approach, in which the response function is(More)