Learn More
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data(More)
Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins(More)
This study develops the random phylogenies rate test (RAPRATE), a likelihood method that simulates morphological evolution along randomly generated phylogenies, and uses it to determine whether a considerable difference in morphological diversity between two sister clades of South American fishes should be taken as evidence of differing rates of(More)
We examined the shapes and sizes of dermal bones of the palate of selected Palaeozoic tetrapods in order to identify the ancestral states of palatal bone morphologies in the earliest tetrapods, to learn how the composition of the palate varies within and among early tetrapod radiations, and to recognize evolutionary correlations among the size and shapes of(More)
Scientists rarely reuse expert knowledge of phylogeny, in spite of years ofeffort to assemble a great “Tree of Life” (ToL). A notableexception involves the use of Phylomatic, which provides tools togenerate custom phylogenies from a large, pre-computed, expert phylogeny ofplant taxa. This suggests great potential for a more generalized systemthat, starting(More)
In theory, evolutionary modularity allows anatomical structures to respond differently to selective regimes, thus promoting morphological diversification. These differences can then influence the rate and direction of phenotypic evolution among structures. Here we use geometric morphometrics and phenotypic matrix statistics to compare rates of craniofacial(More)
The data presented herein support the article "Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes)" (B.F. Melo, B.L. Sidlauskas, B.W. Frable, K. Hoekzema, R.P. Vari, C. Oliveira, 2016) [1], which inferred phylogenetic relationships of the prochilodontids from an alignment of three mitochondrial and three(More)
  • 1