Brian S Sørensen

Learn More
Hybridization and its possible impacts is a subject of increased attention in connection with the risk of unintended gene flow from cultivated (including genetically modified) plants to wild relatives. Whether such gene flow by hybridization is likely to take place depends among other things on the persistence of the hybrids in a natural environment over(More)
Silicon nanowire (Si NW)-based field effect transistors (FETs) have shown great potential as biosensors (bioFETs) for ultra-sensitive and label-free detection of biomolecular interactions. Their sensitivity depends not only on the device properties, but also on the function of the biological recognition motif attached to the Si NWs. In this study, we show(More)
In this work, we present a computational methodology for predicting the change in signal (conductance sensitivity) of a nano-BioFET sensor (a sensor based on a biomolecule binding another biomolecule attached to a nano-wire field effect transistor) upon binding its target molecule. The methodology is a combination of the screening model of surface charge(More)
  • 1