Brian S Finlin

Learn More
Using microarray analysis, we identified a unique ras superfamily gene, termed RERG (ras-related and estrogen-regulated growth inhibitor), whose expression was decreased or lost in a significant percentage of primary human breast tumors that show a poor clinical prognosis. Importantly, high RERG expression correlated with expression of a set of genes that(More)
Here we report the molecular cloning and biochemical characterization of Rem2 (for Rem, Rad and Gem-related 2), a novel GTP-binding protein identified on the basis of its homology with the Rem, Rad, Gem and Kir (RGK) family of Ras-related small GTP-binding proteins. Rem2 mRNA was detected in rat brain and kidney, making it the first member of the RGK family(More)
Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions and are controlled by a diversity of intracellular signals. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. In this study, microarray(More)
We report the cDNA cloning and characterization of a novel GTP-binding protein, termed Rem (for Rad and Gem-related), that was identified as a product of polymerase chain reaction amplification using oligonucleotide primers derived from conserved regions of the Rad, Gem, and Kir Ras subfamily. Alignment of the full-length open reading frame of mouse Rem(More)
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and(More)
We report the biochemical characterization of Rit and Rin, two members of the Ras superfamily identified by expression cloning. Recombinant Rit and Rin bind GTP and exhibit intrinsic GTPase activity. Conversion of Gln to Leu at position 79 (for Rit) or 78 (for Rin) (equivalent to position 61 in Ras) resulted in a complete loss of GTPase activity.(More)
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions(More)
Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis.(More)
Rem belongs to a subfamily of Ras-related GTPases that includes Rad, Gem, and Kir. These proteins are unique among the Ras superfamily since their expression is under transcriptional regulation and they contain distinct amino and carboxyl termini. To gain insight into the cellular function of Rem, we have undertaken an expression screen using a mouse embryo(More)
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell(More)