Brian S. Cole

Learn More
The RNA processing factor hnRNP L is required for T cell development and function. However, the spectrum of direct targets of hnRNP L activity in T cells has yet to be defined. In this study, we used cross-linking and immunoprecipitation followed by high-throughput sequencing (CLIP-seq) to identify the RNA binding sites of hnRNP L within the transcriptomes(More)
The formation and execution of a productive immune response requires the maturation of competent T cells and a robust change in cellular activity upon antigen challenge. Such changes in cellular function depend on regulated alterations to protein expression. Previous research has focused on defining transcriptional changes that regulate protein expression(More)
DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the(More)
Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these(More)
HnRNP L is a ubiquitous splicing-regulatory protein that is critical for the development and function of mammalian T cells. Previous work has identified a few targets of hnRNP L-dependent alternative splicing in T cells and has described transcriptome-wide association of hnRNP L with RNA. However, a comprehensive analysis of the impact of hnRNP L on mRNA(More)
X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among(More)
CELF2 is an RNA binding protein that has been implicated in developmental and signal-dependent splicing in the heart, brain and T cells. In the heart, CELF2 expression decreases during development, while in T cells CELF2 expression increases both during development and in response to antigen-induced signaling events. Although hundreds of CELF2-responsive(More)
  • 1