Learn More
DNA promoter hypermethylation has been shown to be a functional mechanism of transcriptional repression. This epigenetic gene silencing is thought to involve the recruitment of chromatin-remodeling factors, such as histone deacetylases, to methylated DNA via a family of proteins called methyl-CpG binding proteins (MBD1 to -4). MBD1, a member of this family,(More)
Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited(More)
Stannin (Snn) was discovered using subtractive hybridization methodology designed to find gene products related to selective organotin toxicity and apoptosis. The cDNAs for Snn were first isolated from brain tissues sensitive to trimethyltin, and were subsequently used to localize, characterize, and identify genomic DNA, and other gene products of Snn. Snn(More)
Stannin (Snn) is a highly conserved vertebrate protein that has been closely linked to trimethyltin (TMT) toxicity. We have previously demonstrated that Snn is required for TMT-induced cell death. Others have shown that TMT exposure results in tumor necrosis factor-alpha (TNFalpha) production and that TNFalpha treatment induces Snn gene expression in human(More)
Cet article décrit un projet ayant pour objectif d'exploiter en tandem les apports théoriques de la SDRT et les techniques statistiques les plus récentes. Ce projet s'appuie sur le parser XLE (Palo Alto Research Center; PARC) en vue d'implémenter un système de résolution d'anaphores fondé sur le discours. This paper describes a project that proposes to(More)
Stannin (Snn) is a highly conserved, 88-amino acid protein that may mediate the selective toxicity of organotins. Snn is localized in tissues with known sensitivity to trimethyltin (TMT), including the central nervous system, immune system, spleen, kidney and lung. Cells in culture that do not express Snn show considerable resistance to TMT toxicity. In(More)
The molecular mechanisms underlying the selective toxicity of trimethyltin (TMT) remain unclear. Stannin (Snn), a protein preferentially expressed in TMT-sensitive cells, provides a direct link to the molecular basis for TMT toxicity. Recent evidence demonstrated that Snn peptides bind and de-alkylate TMT to dimethyltin (DMT); Snn may mediate both TMT and(More)