Learn More
OBJECTIVE We have previously shown that the transcription factor, nuclear factor of activated T-cells 5 (NFAT5), regulates vascular smooth muscle cell phenotypic modulation, but the role of NFAT5 in atherosclerosis is unknown. Our main objective was to determine if NFAT5 expression in bone marrow (BM)-derived cells altered atherosclerotic development and(More)
OBJECTIVE The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. METHODS AND RESULTS S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute(More)
The "quantitative" ChIP, a tool commonly used to study protein-DNA interactions in cells and tissue, is a difficult assay often plagued with technical error. We present, herein, the process required to merge multiple protocols into a quick, reliable and easy method and an approach to accurately quantify ChIP DNA prior to performing PCR. We demonstrate that(More)
Potent therapeutic compounds with dose dependent side effects require more efficient and selective drug delivery to reduce systemic drug doses. Here, we demonstrate a new platform that combines intravascular ultrasound (IVUS) and drug-loaded microbubbles to enhance and localize drug delivery, while enabling versatility of drug type and dosing. Localization(More)
  • 1