Learn More
The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in(More)
OBJECTIVE We have previously shown that the transcription factor, nuclear factor of activated T-cells 5 (NFAT5), regulates vascular smooth muscle cell phenotypic modulation, but the role of NFAT5 in atherosclerosis is unknown. Our main objective was to determine if NFAT5 expression in bone marrow (BM)-derived cells altered atherosclerotic development and(More)
A hallmark of smooth muscle cell (SMC) phenotypic switching in atherosclerotic lesions is suppression of SMC differentiation marker gene expression. Yet little is known regarding the molecular mechanisms that control this process. Here we show that transcription of the SMC differentiation marker gene SM22alpha is reduced in atherosclerotic lesions and(More)
OBJECTIVE The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. METHODS AND RESULTS S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute(More)
OBJECTIVE We previously demonstrated that upregulation of intermediate-conductance Ca(2+)-activated K(+) channels (K(Ca)3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of K(Ca)3.1 in the regulation of coronary SMC phenotypic(More)
The "quantitative" ChIP, a tool commonly used to study protein-DNA interactions in cells and tissue, is a difficult assay often plagued with technical error. We present, herein, the process required to merge multiple protocols into a quick, reliable and easy method and an approach to accurately quantify ChIP DNA prior to performing PCR. We demonstrate that(More)
Potent therapeutic compounds with dose dependent side effects require more efficient and selective drug delivery to reduce systemic drug doses. Here, we demonstrate a new platform that combines intravascular ultrasound (IVUS) and drug-loaded microbubbles to enhance and localize drug delivery, while enabling versatility of drug type and dosing. Localization(More)
  • 1