Learn More
Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics(More)
OBJECTIVE Lysophosphatidylcholine is a major product of low-density lipoprotein (LDL) oxidation and secretory phospholipase A2-mediated lipid hydrolysis within atherosclerotic lesions. The G2A receptor mediates chemotaxis of cultured macrophages and T cells to lysophosphatidylcholine, supporting a pro-atherogenic role for this receptor in vivo. We(More)
Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota(More)
Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with(More)
We have developed an association-based approach using classical inbred strains of mice in which we correct for population structure, which is very extensive in mice, using an efficient mixed-model algorithm. Our approach includes inbred parental strains as well as recombinant inbred strains in order to capture loci with effect sizes typical of complex(More)
Lysophosphatidylcholine (LPC) is considered a major proatherogenic component of oxidized low density lipoprotein based on its proinflammatory actions in vitro. LPC stimulates macrophage and T-cell chemotaxis via the G protein-coupled receptor G2A and may thus promote inflammatory cell infiltration during atherosclerotic lesion development. However, G2A also(More)
OBJECTIVE Deletion of the lysophospholipid-sensitive receptor, G2A, in low-density lipoprotein receptor knockout (LDLR(-/-)) mice elevates plasma high-density lipoprotein (HDL) cholesterol and suppresses atherosclerosis. However, chemotactic action of G2A in monocytes/macrophages, in addition to its modulatory effect on HDL, may contribute to the(More)
Metabolic diseases result from multiple genetic and environmental factors. We report here that one manner in which environmental factors can contribute to metabolic disease progression is through modification to chromatin. We demonstrate that high fat diet leads to chromatin remodeling in the livers of C57BL/6J mice, as compared with mice fed a control(More)
Genetics provides a potentially powerful approach to dissect host-gut microbiota interactions. Toward this end, we profiled gut microbiota using 16s rRNA gene sequencing in a panel of 110 diverse inbred strains of mice. This panel has previously been studied for a wide range of metabolic traits and can be used for high-resolution association mapping. Using(More)
OBJECTIVE To characterize modifications of high-density lipoprotein (HDL) in autoimmune gld mice that may be relevant to premature atherosclerosis in systemic lupus erythematosus, and to assess their relationship to specific aspects of autoimmune disease. METHODS HDL cholesterol (HDL-C), apolipoprotein A-I (Apo A-I), paraoxonase 1 (PON1) activity, hepatic(More)