Learn More
Multiple sequence alignment plays an important role in molecular sequence analysis. An alignment is the arrangement of two (pairwise alignment) or more (multiple alignment) sequences of 'residues' (nucleotides or amino acids) that maximizes the similarities between them. Algorithmically, the problem consists of opening and extending gaps in the sequences to(More)
Efficient, robust, and accurate genotype imputation algorithms make large-scale application of genomic selection cost effective. An algorithm that imputes alleles or allele probabilities for all animals in the pedigree and for all genotyped single nucleotide polymorphisms (SNP) provides a framework to combine all pedigree, genomic, and phenotypic(More)
BACKGROUND Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library(More)
BACKGROUND The periodic pattern of DNA in exons is a known phenomenon. It was suggested that one of the initial causes of periodicity could be the universal (RNY)npattern (R = A or G, Y = C or U, N = any base) of ancient RNA. Two major questions were addressed in this paper. Firstly, the cause of DNA periodicity, which was investigated by comparisons(More)
Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection(More)
BACKGROUND Mate selection can be used as a framework to balance key technical, cost and logistical issues while implementing a breeding program at a tactical level. The resulting mating lists accommodate optimal contributions of parents to future generations, in conjunction with other factors such as progeny inbreeding, connection between herds, use of(More)
Identifying recombination events and the chromosomal segments that constitute a gamete is useful for a number of applications in genomic analyses. In livestock, genotypic data are commonly available for half-sib families. We propose a straightforward but computationally efficient method to use single nucleotide polymorphism marker genotypes on half-sibs to(More)
Mechanistic animal growth models can incorporate a description of the genotype as represented by underlying biological traits that aim to specify the animal's genetic potential for performance, independent from the environmental factors captured by the models. It can be argued that these traits may therefore be more closely associated to genetic potential,(More)
BACKGROUND There is wide interest in calculating genomic breeding values (GEBVs) in livestock using dense, genome-wide SNP data. The general framework for genomic selection assumes all individuals are genotyped at high-density, which may not be true in practice. Methods to add additional genotypes for individuals not genotyped at high density have the(More)
BACKGROUND Haplotype reconstruction is important in linkage mapping and association mapping of quantitative trait loci (QTL). One widely used statistical approach for haplotype reconstruction is simulated annealing (SA), implemented in SimWalk2. However, the algorithm needs a very large number of sequential iterations, and it does not clearly show if(More)