Brian P. Ingalls

Learn More
For cellular biochemical reaction systems where the numbers of molecules is small, significant noise is associated with chemical reaction events. This molecular noise can give rise to behavior that is very different from the predictions of deterministic rate equation models. Unfortunately, there are few analytic methods for examining the qualitative(More)
High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this(More)
This work addresses sensitivity analysis of autonomously oscillating biochemical systems. Building on results from the engineering literature, a general analysis is presented which addresses key features of oscillatory trajectories, namely the period and local maximum or minimum values of species concentrations and reaction rates. A discussion of(More)
Sensitivity analysis addresses the manner in which model behaviour depends on model parametrization. Global sensitivity analysis makes use of statistical tools to address system behaviour over a wide range of operating conditions, whereas local sensitivity analysis focuses attention on a specific set of nominal parameter values. This narrow focus allows a(More)
The Linear Noise Approximation offers an elegant analytic method to probe the effects of molecular noise on small-scale chemical reaction pathways by expanding the full chemical Master equation in inverse powers of the system size. The first-order equation is an analytically tractable Fokker-Planck equation governing the statistics of the fluctuations. Two(More)
BACKGROUND Protein enrichment by sub-cellular fractionation was combined with differential-in-gel-electrophoresis (DIGE) to address the detection of the low abundance chromatin proteins in the budding yeast proteome. Comparisons of whole-cell extracts and chromatin fractions were used to provide a measure of the degree of chromatin association for(More)
Eukaryotic cell proliferation involves DNA replication, a tightly regulated process mediated by a multitude of protein factors. In budding yeast, the initiation of replication is facilitated by the heterohexameric origin recognition complex (ORC). ORC binds to specific origins of replication and then serves as a scaffold for the recruitment of other factors(More)
Analysis of metabolic networks typically begins with construction of the stoichiometry matrix, which characterizes the network topology. This matrix provides, via the balance equation, a description of the potential steady-state flow distribution. This paper begins with the observation that the balance equation depends only on the structure of linear(More)
Noise plays a significant role in cellular reaction pathways. Analysis of fluctuations in biochemical systems is often carried out by numerical simulation. There are a number of analytical tools available to complement these simulations, but there is one important class of noise sources for which few results are available – colored noise (i.e. noise(More)
  • 1