Learn More
Recent data suggest that cholesterol metabolism is linked to susceptibility to Alzheimer's disease (AD). However, no direct evidence has been reported linking cholesterol metabolism and the pathogenesis of AD. To test the hypothesis that amyloid beta-peptide (Abeta) deposition can be modulated by diet-induced hypercholesterolemia, we used a transgenic-mouse(More)
Mutations in the amyloid precursor protein (APP) and presenilin-1 and -2 genes (PS-1, -2) cause Alzheimer's disease (AD). Mice carrying both mutant genes (PS/APP) develop AD-like deposits composed of beta-amyloid (Abeta) at an early age. In this study, we have examined how Abeta deposition is associated with immune responses. Both fibrillar and nonfibrillar(More)
To examine the normal cellular function of tau and its role in pathogenesis, we have created transgenic mice that overexpress a tau transgene derived from a human PAC that contains the coding sequence, intronic regions, and regulatory regions of the human gene. All six isoforms of human tau are represented in the transgenic mouse brain at the mRNA and(More)
Clinical, epidemiological, and laboratory studies suggest that cholesterol may play a role in the pathogenesis of Alzheimer's disease (AD). Transgenic mice exhibiting an Alzheimer's beta-amyloid phenotype were treated with the cholesterol-lowering drug BM15.766 and tested for modulation of beta-amyloid levels. BM15.766 treatment reduced plasma cholesterol,(More)
The permeability of albumin, insulin, and human A beta 1--40 at the blood-brain barrier (BBB) was determined in the normal adult mouse (B6/SJL) and in the double transgenic Alzheimer mouse (APP, PS1) by using an I.V. bolus injection technique to quantify the permeability coefficient-surface area (PS) product for each protein after correction for the(More)
Immunization with amyloid-beta (Abeta) peptide in mouse models of Alzheimer's disease has been reported to decrease cerebral Abeta levels and improve behavioral deficits. Several mechanisms have been proposed, including antibody-induced phagocytosis of Abeta by cerebral microglia and increased efflux of Abeta from the brain to the periphery. The latter(More)
Neuropathy target esterase (NTE) is a neuronal membrane protein originally identified for its property to be modified by organo-phosphates (OPs), which in humans cause neuropathy characterized by axonal degeneration. Drosophila mutants for the homolog gene of NTE, swisscheese (sws), indicated a possible involvement of sws in the regulation of axon-glial(More)
  • 1